Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Judging similarities among objects, events, and experiences is one of the most basic cognitive abilities, allowing us to make predictions and generalizations. The main assumption in similarity judgment is that people selectively attend to salient features of stimuli and judge their similarities on the basis of the common and distinct features of the stimuli. However, it is unclear how people select features from stimuli and how they weigh features. Here, we present a computational method that helps address these questions. Our procedure combines image-processing techniques with a machine-learning algorithm and assesses feature weights that can account for both similarity and categorization judgment data. Our analysis suggests that a small number of local features are particularly important to explain our behavioral data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1551-6709.2010.01122.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!