The excitation of the photosensitive Belousov-Zhabotinsky (BZ) reaction induced by light stimulation was systematically investigated. A stepwise increase in the light intensity induced the excitation, whereas a stepwise decrease did not induce the excitation. The threshold values for the excitation were found to be a function of the initial and final light intensities, time variation in light intensity, and the concentration of NaBrO(3). The experimental results were qualitatively reproduced by a theoretical calculation based on a three-variable Oregonator model modified for the photosensitive BZ reaction. These results suggest that although the steady light irradiation is known to inhibit oscillation and chemical waves in the BZ system under almost all conditions, the stepwise increase in the light irradiation leads to the rapid production of an activator, resulting in the photoexcitation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp2012057DOI Listing

Publication Analysis

Top Keywords

belousov-zhabotinsky reaction
8
stepwise increase
8
increase light
8
light intensity
8
light irradiation
8
light
6
photoexcited chemical
4
chemical wave
4
wave ruthenium-catalyzed
4
ruthenium-catalyzed belousov-zhabotinsky
4

Similar Publications

The oscillatory Belousov-Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave.

View Article and Find Full Text PDF

Interactions and Oscillatory Dynamics of Chemically Powered Soft Swimmers.

J Phys Chem B

December 2024

Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States.

We report the interactions and dynamics of chemically powered soft swimmers that undergo autonomous oscillatory motion. The interaction of autonomous entities is the basis for the development of collective behaviors among biological organisms. Collective behaviors enable organisms to efficiently attain food and coordinate against threats.

View Article and Find Full Text PDF

For the first time, we introduced chemomechanical self-oscillating poly(N-isopropylacrylamide)-based gels containing catalytically active Fe or Ru complexes both as crosslinkers and as pendant groups. All the obtained gels exhibited sustained autonomous oscillations driven by the Belousov-Zhabotinsky reaction within their structure. The Ru complex-based gels also demonstrated pronounced chemomechanical oscillations; they periodically swelled/shrunk when the catalyst was reduced/oxidized.

View Article and Find Full Text PDF

Autonomous Motion of Hydrogels Driven by Semi-Interpenetrating Chemical Processing Systems.

ACS Macro Lett

November 2024

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Developing artificial autonomous materials is crucial for a deeper understanding of the emergence of life-like behavior. In nature, cells achieve autonomy through chemical processing systems incorporated into soft material-based frameworks. Inspired by natural cells, we herein describe a straightforward methodology for constructing artificial autonomous materials consisting of a polymer-based chemical processing system and a hydrogel-based soft framework.

View Article and Find Full Text PDF

In this work, we employed an attractive hybrid integral transform technique known as the natural transform decomposition method (NTDM) to investigate analytical solutions for the Noyes-Field (NF) model of the time-fractional Belousov-Zhabotinsky (TF-BZ) reaction system. The aforementioned time-fractional model is considered within the framework of the Caputo, Caputo-Fabrizio, and Atangana-Baleanu fractional derivatives. The NTDM couples the Adomian decomposition method and the natural transform method to generate rapidly convergent series-type solutions via an elegant iterative approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!