We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahía de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydraulic gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (∼500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (δ(2)H(water) and δ(18)O(water), δ(34)S(sulfate), δ(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to ∼1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH ∼7, Eh ∼100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(III) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(III)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (∼500 μg/L As natural background) into the tailings deposit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es1036496 | DOI Listing |
Mar Pollut Bull
January 2025
CREOCEAN, Valparc- bât B, 230 avenue de Rome, 83500 La Seyne-sur-Mer, France.
In the context of evaluating the environmental impact of deep-sea tailing practices, we conducted a case study on the Bayer effluent released into the Mediterranean Sea by the French Gardanne alumina plant. This effluent results from the filtration of red mud, which has previously been discharged into the Cassidaigne canyon for 55 years. In 2015, regulatory changes permitted the released of a filtered effluent instead of the slurry.
View Article and Find Full Text PDFSci Total Environ
January 2025
Instituto Geológico y Minero de España (CSIC), Ríos Rosas 23, ES-28003 Madrid, Spain. Electronic address:
Mountain lakes are particularly fragile ecosystems undergoing important ecological and depositional transformations associated with ongoing global change. However, the history of anthropogenic impacts on mountain lakes and their catchments is much longer, in many cases featuring millennia of summer pastoral farming. More recently, the growing demand for raw materials and energy linked to industrialization, particularly accelerated since the 19th century CE, meant a further increase in human impact on mountain areas.
View Article and Find Full Text PDFHealth Phys
January 2025
Oregon State University, Corvallis, OR.
A former uranium recovery facility located in northwestern New Mexico currently serves as a uranium mill tailings site undergoing reclamation and decommissioning. High velocity winds are common in the area, causing soil erosion via aeolian processes. Strong winds may carry soil for several kilometers, which is redeposited downwind.
View Article and Find Full Text PDFSci Total Environ
January 2025
Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France. Electronic address:
Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of High-Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.
In this study, the spatial distribution of the mechanical strength of ultra-fine tailings cemented paste backfill (UCPB) in underground stopes was examined, and the micro-mechanism responsible for differences in spatial strength performance via changes in particle deposition was elucidated. To better understand this phenomenon, we constructed a similar backfilling stope model using the ultra-fine tailings of a gold mine. We manufactured specimens at different spatial locations and conducted a novel series of tests, including uniaxial compressive strength, shear strength, and conventional triaxial tests, to obtain the strength parameters in different spatial distributions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!