Mechanistic questions concerning palladium and norbornene catalyzed aryl-aryl coupling reactions are treated in this paper: how aryl halides react with the intermediate palladacycles, formed by interaction of the two catalysts with an aryl halide, and what is the rational explanation of the "ortho effect" (caused by an ortho substituent in the starting aryl halide), which leads to aryl-aryl coupling with a second molecule of aryl halide rather than to aryl-norbornyl coupling. Two possible pathways have been proposed, one involving aryl halide oxidative addition to the palladacycle, the other passing through a palladium(II) transmetalation, also involving the palladacycle, as previously proposed by Cardenas and Echavarren. Our DFT calculations using M06 show that, in palladium-catalyzed reaction of aryl halides, not containing ortho substituents, and norbornene, the intermediate palladacycle formed has a good probability to undergo transmetalation, energetically favored over the oxidative addition leading to Pd(IV). The unselective sp(2)-sp(2) and sp(2)-sp(3) coupling, experimentally observed in this case, can be explained in the framework of the transmetalation pathway since the energetic difference between aryl attack onto the aryl or norbornyl carbon of the palladacycle intermediate is quite small. On the other hand, according to the experimentally observed "ortho effect", selective aryl-aryl coupling only occurs in the reactions of ortho-substituted metallacycles. The present work offers the first possible rationalization of this finding. These in situ formed palladacycles containing an ortho substituent could more easily undergo oxidative addition of an aryl halide rather than reductive elimination from the transmetalation intermediate as a result of a steric clash in the transition state of the latter. The now energetically accessible Pd(IV) intermediate, featuring a Y-distorted trigonal bipyramidal structure, can account for the reported selective aryl-aryl coupling through a reductive elimination which is easier than aryl-norbornyl coupling. Thus, the steric effect represents the main factor that dictates the energetic convenience of the system to follow the Pd(IV) or the transmetalation pathway. Ortho substituents cause a higher energy transition state for reductive elimination from the transmetalation intermediate than for oxidative addition to the metallacycle palladium(II) and the pathway based on the latter predominates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja110988p | DOI Listing |
Org Lett
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.
A Ni/photoredox dual-catalyzed multicomponent cross-electrophile coupling of N-vinyl amides with (hetero)aryl halides and (2°, 3°)-alkyl redox-active esters in the presence of cheap reductant Hantzsch ester is reported here. This reductive protocol provides direct access to various synthetically challenging chiral α-arylamides in good yields and excellent enantioselectivities (up to 99% ee, with the majority exceeding 97% ee), which can be further derived into chiral primary and secondary amines. Preliminary experimental studies shed light on the potential catalytic pathways.
View Article and Find Full Text PDFChemistryOpen
January 2025
University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France.
The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D evolution reaction (DER). Here, Cu site-adjusted adsorption and crown ether-reconfigured interfacial DO are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm. Cu sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!