Tyrosinase inhibition studies are needed due to the agricultural and medicinal applications. For probing effective inhibitors of tyrosinase, a combination of computational prediction and enzymatic assay via kinetics were important. We predicted the 3D structure of tyrosinase from Agaricus bisporus, used a docking algorithm to simulate binding between tyrosinase and terephthalic acid (TPA) and studied the reversible inhibition of tyrosinase by TPA. Simulation was successful (binding energies for Autodock4 = -1.54 and Fred2.0 = -3.19 kcal/mol), suggesting that TPA interacts with histidine residues that are known to bind with copper ions at the active site. TPA inhibited tyrosinase in a mixed-type manner with a K ( i ) = 11.01 ± 2.12 mM. Measurements of intrinsic and ANS-binding fluorescences showed that TPA induced no changes in tertiary structure. The present study suggested that the strategy of predicting tyrosinase inhibition based on hydroxyl groups and orientation may prove useful for screening of potential tyrosinase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10930-011-9329-xDOI Listing

Publication Analysis

Top Keywords

tyrosinase
9
inhibition tyrosinase
8
tyrosinase agaricus
8
agaricus bisporus
8
terephthalic acid
8
tyrosinase inhibition
8
tpa
5
mixed-type inhibition
4
bisporus terephthalic
4
acid computational
4

Similar Publications

: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation.

View Article and Find Full Text PDF

This study evaluates the efficiency of 20 Natural Deep Eutectic Solvents (NADES) formulations for extracting curcuminoids and other bioactive compounds from turmeric and emphasize their ability to preserve and enhance antioxidant, antimicrobial, antidiabetic, and skin depigmentation effects. The NADES formulations, prepared using choline chloride (ChCl) combined with sugars, carboxylic acids, glycerol, amino acids, urea, polyols, and betaine, were assessed for their extraction efficiency based on the total phenolic content and curcumin concentration. Fourier transform infrared spectroscopy was employed to characterize the synthesized NADES and confirm their chemical composition.

View Article and Find Full Text PDF

Unveiling the Phytochemical Diversity and Bioactivity of : A First Report Integrating Experimental and In Silico Approaches.

Pharmaceuticals (Basel)

January 2025

Department of Molecular Biology and Genetics, Faculty of Science, Kilis 7 Aralik University, 79000 Kilis, Türkiye.

: The genus is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of . : Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of .

View Article and Find Full Text PDF

Quinoa is recognized for its nutritional and pharmacological properties. This study aims to investigate the impact of salt stress induced by varying concentrations of sodium chloride (NaCl) on the production of phenolic compounds and their biological activities in different quinoa accessions. Leaves from three quinoa accessions (Q4, Q24, and Q45) cultivated under increasing NaCl treatments were subjected to chemical analysis using ethanol and water extract.

View Article and Find Full Text PDF

Natural products and botanicals continue to play a very important role in the development of cosmetics worldwide. The chemical constituents of a fine active fraction of the whole plant extract of Walp., and the tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory and antioxidant activities of this fraction were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!