There is a wealth of evidence showing that a moderate level of non-stop exercise improves the growth and feed conversion of many active fishes. A diverse number of active fish are currently being farmed, and an optimal level of exercise may feasibly improve the production efficiency of these species in intensive culture systems. Our experiments have set out to resolve the growth benefits of juvenile New Zealand yellowtail kingfish (Seriola lalandi) enforced to swim in currents at various speeds over two temperatures (14.9 and 21.1 °C). We also probed potential sources of physiological efficiency in an attempt to resolve how growth is enhanced at a time of high energetic expenditure. Results show that long-term exercise yields a 10% increase in growth but this occurs in surprisingly low flows (0.75 BL s⁻¹) and only under favourable environmental temperatures (21.1 °C). Experiments using a swim flume respirometer indicate that exercise training has no effect on metabolic scope or critical swimming speeds but it does improve swimming efficiency (lower gross costs of transport, GCOT). Such efficiency may potentially help reconcile the costs of growth and exercise within the range of available metabolic energy (scope). With growth boosted in surprisingly low flows and elevated water temperatures only, further investigations are required to understand the bioenergetics and partitioning of costs in the New Zealand yellowtail kingfish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-011-9500-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!