Sarcopenia, a critical loss of muscle mass and function because of the physiological process of aging, contributes to disability and mortality in older adults. It increases the incidence of pathologic fractures, causing prolonged periods of hospitalization and rehabilitation. The molecular mechanisms underlying sarcopenia are poorly understood, but recent evidence suggests that increased transforming growth factor-β (TGF-β) signaling contributes to impaired satellite cell function and muscle repair in aged skeletal muscle. We therefore evaluated whether antagonism of TGF-β signaling via losartan, an angiotensin II receptor antagonist commonly used to treat high blood pressure, had a beneficial impact on the muscle remodeling process of sarcopenic mice. We demonstrated that mice treated with losartan developed significantly less fibrosis and exhibited improved in vivo muscle function after cardiotoxin-induced injury. We found that losartan not only blunted the canonical TGF-β signaling cascade but also modulated the noncanonical TGF-β mitogen-activated protein kinase pathway. We next assessed whether losartan was able to combat disuse atrophy in aged mice that were subjected to hindlimb immobilization. We showed that immobilized mice treated with losartan were protected against loss of muscle mass. Unexpectedly, this protective mechanism was not mediated by TGF-β signaling but was due to an increased activation of the insulin-like growth factor 1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. Thus, blockade of the AT1 (angiotensin II type I) receptor improved muscle remodeling and protected against disuse atrophy by differentially regulating the TGF-β and IGF-1/Akt/mTOR signaling cascades, two pathways critical for skeletal muscle homeostasis. Thus, losartan, a Food and Drug Administration-approved drug, may prove to have clinical benefits to combat injury-related muscle remodeling and provide protection against disuse atrophy in humans with sarcopenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140459PMC
http://dx.doi.org/10.1126/scitranslmed.3002227DOI Listing

Publication Analysis

Top Keywords

muscle remodeling
16
disuse atrophy
16
tgf-β signaling
16
skeletal muscle
12
muscle
10
loss muscle
8
muscle mass
8
mice treated
8
treated losartan
8
losartan
7

Similar Publications

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

Anti-Scar Effects of Micropatterned Hydrogel after Glaucoma Drainage Device Implantation.

Research (Wash D C)

January 2025

Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.

Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.

View Article and Find Full Text PDF

From basic scientific research to the development of new drugs for pulmonary arterial hypertension: insights from activin-targeting agents.

Breathe (Sheff)

January 2025

Université Paris-Saclay, INSERM UMR_S 999, Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique (HPPIT), Faculté de Médecine, Le Kremlin-Bicêtre, France.

Pulmonary arterial hypertension (PAH) is a severe disorder of the pulmonary vasculature leading to right ventricular failure. This pulmonary vascular remodelling leads to increased pulmonary vascular resistance and high pulmonary arterial pressures. Despite the development of new therapies, many patients continue to experience significant morbidity and mortality.

View Article and Find Full Text PDF

Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.

View Article and Find Full Text PDF

Strength training improves heart function, collagen and strength in rats with heart failure.

J Physiol Sci

January 2025

Experimental Physiology and Biochemistry Laboratory. Physical Education and Sport Center, Federal University of Espirito Santo, Vitoria, Brazil. Electronic address:

Background/objectives: Myocardial infarction (MI) frequently leads to cardiac remodeling and failure with impaired life quality, playing an important role in cardiovascular deaths. Although physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases, the effects of strength training (ST) on the structural and functional aspects of cardiac remodeling need to be further documented. In this study, we aimed to investigate the role of a linear block ST protocol in the rat model of MI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!