Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Soliton solutions of the KP equation have been studied since 1970, when Kadomtsev and Petviashvili [Kadomtsev BB, Petviashvili VI (1970) Sov Phys Dokl 15:539-541] proposed a two-dimensional nonlinear dispersive wave equation now known as the KP equation. It is well-known that the Wronskian approach to the KP equation provides a method to construct soliton solutions. The regular soliton solutions that one obtains in this way come from points of the totally nonnegative part of the Grassmannian. In this paper we explain how the theory of total positivity and cluster algebras provides a framework for understanding these soliton solutions to the KP equation. We then use this framework to give an explicit construction of certain soliton contour graphs and solve the inverse problem for soliton solutions coming from the totally positive part of the Grassmannian.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107278 | PMC |
http://dx.doi.org/10.1073/pnas.1102627108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!