Maternal malnutrition programs the endocrine pancreas in progeny.

Am J Clin Nutr

Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.

Published: December 2011

Type 2 diabetes arises when the endocrine pancreas fails to secrete sufficient insulin to cope with metabolic demands resulting from β cell secretory dysfunction, decreased β cell mass, or both. Epidemiologic studies have shown strong relations between poor fetal and early postnatal nutrition and susceptibility to diabetes later in life. Animal models have been established, and studies have shown that a reduction in the availability of nutrients during fetal development programs the endocrine pancreas and insulin-sensitive tissues. We investigated several modes of early malnutrition in rats. Regardless of the type of diet investigated, whether there was a deficit in calories or protein in food or even in the presence of a high-fat diet, malnourished pups were born with a defect in their β cell population, with fewer β cells that did not secrete enough insulin and that were more vulnerable to oxidative stress; such populations of β cells will never completely recover. Despite the similar endpoint, the cellular and physiologic mechanisms that contribute to alterations in β cell mass differ depending on the nature of the nutritional insult. Hormones that are operative during fetal life, such as insulin, insulin-like growth factors, and glucocorticoids; specific molecules, such as taurine; and islet vascularization have been implicated as possible factors in amplifying this defect. The molecular mechanisms responsible for intrauterine programming of β cells are still elusive, but among them the programming of mitochondria may be a strong central candidate.

Download full-text PDF

Source
http://dx.doi.org/10.3945/ajcn.110.000729DOI Listing

Publication Analysis

Top Keywords

endocrine pancreas
12
programs endocrine
8
cell mass
8
maternal malnutrition
4
malnutrition programs
4
pancreas progeny
4
progeny type
4
type diabetes
4
diabetes arises
4
arises endocrine
4

Similar Publications

Background: Patients with painful chronic pancreatitis combined with a dilated main pancreatic duct and a normal size pancreatic head are treated according to guidelines by lateral pancreaticojejunostomy (LPJ). This systematic review compared outcomes of minimally invasive LPJ and open LPJ.

Methods: From 1 January 2000 until 13 November 2023, series reporting on minimally invasive LPJ and open LPJ in patients with symptomatic chronic pancreatitis were included.

View Article and Find Full Text PDF

Can Islet Transplantation Possibly Reduce Mortality in Type 1 Diabetes.

Cell Transplant

January 2025

Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.

Islet transplantation (IT) is a successful natural cell therapy. But the benefits are known mostly to individuals with severe type 1 diabetes who undergo IT and the health care professionals that work to make the therapy available, reproducible, and safe. Data linking IT to overall survival in T1D might alter this situation and frame the therapy in a more positive light.

View Article and Find Full Text PDF

Advancements and Challenges in Immune Protection Strategies for Islet Transplantation.

J Diabetes

January 2025

State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.

Pancreatic islet transplantation is a crucial treatment for managing type 1 diabetes (T1D) in clinical settings. However, the limited availability of human cadaveric islet donors and the need for ongoing administration of immunosuppressive agents post-transplantation hinder the widespread use of this treatment. Stem cell-derived islet organoids have emerged as an effective alternative to primary human islets.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation.

View Article and Find Full Text PDF

Insulinoma is the most common pancreatic tumor diagnosed in dogs. This study aimed to report incidence risk, breed predispositions and other demographic risk factors for insulinoma diagnosed in dogs under primary veterinary care in the UK. The VetCompass Program supports research on anonymized electronic health records (EHRs) from dogs under UK veterinary care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!