Following the TLR-dependent initiation phase of acute systemic proinflammatory responses such as sepsis, an adaptive phase represses or activates a specific pattern of gene expression until the inflammation resolves. Here, we used the THP-1 sepsis cell model of bacterial LPS/endotoxin tolerance to show that TLR4-induced miR-146a supports the feed-forward adaptive processes that silence transcription and disrupt translation of acute proinflammatory genes. First, we found that miR-146a regulates a pathway that promotes the binding of transcription repressor RelB to the TNF-α promoter, a step known to precede histone and DNA modifications, which generate facultative heterochromatin to silence acute proinflammatory genes. However, once RelB binding occurred, miR-146a inhibition could not reverse compacted chromatin, and endotoxin tolerance persisted. Second, we observed that miR-146a regulates a pathway that supports assembly of the translation repressor complex of TNF-α by preventing the interaction of the RNA-binding protein effector Ago2 and RBM4. We also determined that once endotoxin tolerance is established, and specific genes have been reprogrammed, transcription and translation disruption can be reversed only by simultaneously depleting RelB and inhibiting miR-146a. Thus, miR-146a induction supports the TLR4-dependent shift from initiation to gene-specific repression at two levels. Our results also imply that therapies designed to reverse endotoxin tolerance as potential therapies for sepsis should be directed at the transcription and translation pathways of reprogramming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157899 | PMC |
http://dx.doi.org/10.1189/jlb.0211074 | DOI Listing |
Biomolecules
December 2024
Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
Lipopolysaccharide (LPS) is a potent endotoxin released at high concentrations in acute infections, causing massive host inflammatory response. Accumulating evidence indicates that dysbiosis-associated chronic low levels of circulating LPS can sustain a prolonged sterile low-grade inflammation that increases the risk of several non-communicable diseases. Interventions aimed at increasing the abundance of beneficial/probiotic bacteria, including , result in reduced inflammation, favoring metabolic and immune health.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China. Electronic address:
Interleukin-2 (IL-2) is pivotal in immune regulation, particularly in the promotion of regulatory T (Treg) cells and the maintenance of immune tolerance. While its efficacy in autoimmune diseases is well established, its role in type 2 diabetes (T2D) remains largely unexplored. This study investigates the effects of low-dose IL-2 in a KM mouse model of T2D induced by streptozotocin (STZ) and a high-fat, high-sugar (HFHS) diet.
View Article and Find Full Text PDFGut Microbes
December 2024
Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy.
We investigate the role of homeostatic mechanisms involved in acute, postprandial nutrient metabolism and nutrient-induced systemic inflammation in CKD presence and progression in Metabolic dysfunction-associated steatohepatitis (MASH). We assessed postprandial incretins (GLP-1 and GIP), intestinotropic hormone GLP-2, endotoxin LPS, Zonulin (a marker of intestinal permeability), hepatokines, adipokines and NF-kB activation in circulating MNCs during a meal tolerance test in 52 biopsy proven MASH patients randomized to curcumin Meriva or placebo and 26 matched controls. At baseline, MASH-CKD had a lower GLP-2 response and a 2-fold higher postprandial LPS and NF-kB activation in MNCs than MASH patients without CKD, but similar remaining postprandial or fasting parameters.
View Article and Find Full Text PDFInt Immunol
November 2024
Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
Immune memory has long been considered a function specific to adaptive immune systems; however, adaptive immune memory alone has not fully explained the mechanism by which vaccines exert their protective effects against non-target pathogens. Recently, trained immunity, in which human monocytes vaccinated with bacillus Calmette-Guérin become highly responsive to pathogens other than Mycobacterium tuberculosis, has been reported. However, a phenomenon called endotoxin tolerance is also known, in which monocyte responsiveness is attenuated after the first lipopolysaccharide stimulation.
View Article and Find Full Text PDFFront Immunol
November 2024
Servei de Medicina Intensiva, Hospital Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
Introduction: Bacteremia is a life-threatening condition that can progress to sepsis and septic shock, leading to significant mortality in the emergency department (ED). The standard diagnostic method, blood culture, is time-consuming and prone to false positives and false negatives. Although not widely accepted, several clinical and artificial intelligence-based algorithms have been recently developed to predict bacteremia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!