Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Synaptic responses induced in motoneurones by stimulation of dorsal root (DR) and reticular formation (RF) were recorded intracellularly in the isolated frog spinal cord. Argiopine (spider neurotoxin, a selective blocker of glutamate receptors of the non-N-methyl-D-aspartate (non-NMDA) type) in concentrations from 3 x 10(-7) to 1 x 10(-5) M effectively inhibited di- and polysynaptic components of excitatory postsynaptic potentials (EPSPs) induced by DR and RF stimulation. The monosynaptic component of the RF response was inhibited by argiopine, whereas the monosynaptic component of DR response was actually enhanced. All types of EPSPs studied were blocked by kynurenate (1-2 x 10(-3) M). D,L-2-Amino-5-phosphonovaleric acid (1 x 10(-4) M) slightly diminished the amplitude only of polysynaptic DR responses. A special type of argiopine-resistant, non-NMDA glutamate receptor is assumed to be involved in the generation of an EPSP by the monosynaptic DR input.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0304-3940(90)90541-g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!