Malignant migrating partial seizures in a 4-month-old boy.

Epileptic Disord

Department of Neurology, Reinier De Graaf Group, Delft, the Netherlands.

Published: June 2011

Malignant migrating partial seizures in infancy is an epilepsy syndrome characterised by an onset before the age of six months, multifocal seizures and an EEG pattern consisting of seizures which occur independently and sequentially from both hemispheres. The clinical course of a four-month-old boy with this syndrome, illustrated by video material of the seizures and EEG recordings, is described. The possible neurophysiological mechanism of epileptogenic activity alternating or 'migrating' from one hemisphere to the other is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1684/epd.2011.0424DOI Listing

Publication Analysis

Top Keywords

malignant migrating
8
migrating partial
8
partial seizures
8
seizures eeg
8
seizures
5
seizures 4-month-old
4
4-month-old boy
4
boy malignant
4
seizures infancy
4
infancy epilepsy
4

Similar Publications

Background: Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer, characterized by a dismal prognosis. In the absence of drug-targetable receptors, chemotherapy remains the sole systemic treatment alternative. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs) that target programmed death 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4), have provided renewed optimism for the treatment of patients with TNBC.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is commonly occurred among males worldwide and its prognosis could be influenced by biochemical recurrence (BCR). MicroRNAs (miRNAs) are functional regulators in carcinogenesis, and miR-221-3p was reported as one of the significant candidates deregulated in PCa. However, its regulatory pattern in PCa BCR across literature reports was not consistent, and the targets and mechanisms in PCa malignant transition and BCR are less explored.

View Article and Find Full Text PDF

hsa_circ_0008305 facilitates the malignant progression of hepatocellular carcinoma by regulating AKR1C3 expression and sponging miR-379-5p.

Sci Rep

January 2025

Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330000, Jiangxi Province, P.R. China.

Circular RNAs (circRNAs) are widely involved in diverse biological processes of cancers. Nonetheless, the potential function of hsa_circ_0008305 in hepatocellular carcinoma (HCC) remains largely unknown. This study aims to elucidate the role and underlying mechanism of hsa_circ_0008305 in HCC.

View Article and Find Full Text PDF

Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.

Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of various tumors through multiple mechanisms. Among these, HOTTIP (HOXA transcript at the distal tip) stands out as an intriguing candidate with diverse functions in several malignancies, including breast cancer and gynecologic cancers such as ovarian, cervical, and endometrial cancers, which are significant global health concerns. HOTTIP interacts with key signaling pathways associated with these cancers, including Wnt/β-catenin, PI3K/AKT, and MEK/ERK pathways, enhancing their activation and downstream effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!