Human DHX9 helicase, also known as nuclear DNA helicase II (NDH II) and RNA helicase A (RHA), belongs to the SF2 superfamily of nucleic acid unwinding enzymes. DHX9 melts simple DNA-DNA, RNA-RNA, and DNA-RNA strands with a 3'-5' polarity; despite this little is known about its substrate specificity. Here, we used partial duplex DNA consisting of M13mp18 DNA and oligonucleotide-based replication and recombination intermediates. We show that DHX9 unwinds DNA- and RNA-containing forks, DNA- and RNA-containing displacement loops (D- and R-loops), and also G-quadruplexes. With these substrates, DHX9 behaved similarly as the RecQ helicase WRN. In contrast to WRN, DHX9 melted RNA-hybrids considerably faster than the corresponding DNA-DNA strands. DHX9 preferably unwound R-loops and DNA-based G-quadruplexes indicating that these structures may be biologically relevant. DHX9 also unwound RNA-based G-quadruplexes that have been reported to occur in human transcripts. It is believed that an improper dissolution of co-transcriptionally formed D-loops, R-loops, and DNA- or RNA-based G-quadruplexes represent potential roadblocks for transcription and thereby enhance transcription associated recombination events. By unwinding these structures, DHX9 may significantly contribute to transcriptional activation and also to the maintenance of genomic stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2011.04.013 | DOI Listing |
PeerJ
December 2024
The First School of Clinical Medicine, Lanzhou University, LanZhou, Gansu, China.
Background: It has been demonstrated that nintedanib can inhibit the proliferation of gastric cancer cells, but the specific mechanism of action is unclear.
Objective: Investigating the changes of key factors involved in gene transcription and post-transcriptional regulation during the process of treating gastric cancer with nintedanib.
Methods: In this study, we performed transcriptome sequencing on gastric cancer cell groups treated with nintedanib and control groups.
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Orthopedics, Nanchang 330006, China.
Objectives: To investigate the regulatory mechanism of aurora kinase B (AURKB) for promoting malignant phenotype of osteosarcoma cells.
Methods: HA-Vector or HA-AURKB was transfected in 293T cells to identify the molecules interacting with AURKB using immunoprecipitation combined with liquid chromatography-tandem mass spectrometry followed by verification with co-immunoprecipitation and Western blotting. In cultured osteosarcoma cells with lentivirus-mediated RNA interference of AURKB or DHX9 or their overexpression, the changes in cell proliferation, migration, and invasion activities were observed with EDU and Transwell assays.
mBio
January 2025
Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA.
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an RNA-binding protein ORF57 in lytic infection. Using an optimized CLIP-seq in this report, we identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS RNA as one of the major ORF57-specific RNA targets.
View Article and Find Full Text PDFCancer Lett
February 2025
Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK. Electronic address:
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
November 2024
Key Laboratory of Environmental Medicine Engineering, School of Public Health, Ministry of Education, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!