Diffusion tensor imaging of anterior commissural fibers in patients with schizophrenia.

Schizophr Res

Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.

Published: August 2011

Introduction: Alterations in white matter connections in schizophrenia have been investigated using diffusion tensor imaging (DTI). There is also evidence from post-mortem studies as well as from magnetic resonance imaging morphometry studies that the anterior commissure (AC) might be implicated in schizophrenia, but no studies, to date, have investigated the AC using DTI or tractography.

Method: DTI scans were analyzed from 25 patients and 23 controls. Mean fractional anisotropy (FA) and trace were measured from the AC tracts. SANS and SAPS were used to evaluate clinical symptoms, and the Iowa Gambling Task, related to decision making, was also examined.

Results: Results revealed a significant decrease in mean FA and a significant increase in mean trace of AC tracts in patients compared with controls. In addition, patients, but not controls, showed a negative correlation between age and AC integrity. Statistically significant positive correlations were also found between AC FA and total positive symptom score. Decision making was negatively correlated with FA in patients on the Iowa Gambling Task, but not in controls.

Conclusion: This study provides quantitative evidence for a reduction of interhemispheric connectivity in schizophrenia within the AC. Negative correlation between age and AC FA in the patients is consistent with the idea that schizophrenia may be a disorder of white matter maturation. Positive correlation between FA and positive symptom is discussed in the context of white matter's established role in modulating neural conduction velocity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745276PMC
http://dx.doi.org/10.1016/j.schres.2011.04.016DOI Listing

Publication Analysis

Top Keywords

diffusion tensor
8
tensor imaging
8
white matter
8
patients controls
8
iowa gambling
8
gambling task
8
decision making
8
negative correlation
8
correlation age
8
positive symptom
8

Similar Publications

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects.

View Article and Find Full Text PDF

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

Background/objectives: Intraneural tumors (INTs) pose a diagnostic challenge, owing to their varied origins within nerve fascicles and their wide spectrum, which includes both benign and malignant forms. Accurate diagnosis and management of these tumors depends upon the skills of the radiologist in identifying key imaging features and correlating them with the patient's clinical symptoms and examination findings.

Methods: This comprehensive review systematically analyzes the various imaging features in the diagnosis of intraneural tumors, ranging from basic MR to advanced MR imaging techniques such as MR neurography (MRN), diffusion tensor imaging (DTI), and dynamic contrast-enhanced (DCE) MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!