We have performed extensive molecular dynamic simulations to analyze the influence of cation and anion natures, and of water concentration, on the structure and dynamics of water-1-alkyl-3-methylimidazolium ionic liquid mixtures. The dependence on water concentration of the radial distribution functions, coordination numbers, and hydrogen bonding degree between the different species has been systematically analyzed for different lengths of the cation alkyl chain (alkyl = ethyl, butyl, hexyl, and octyl) and several counterions. These include two halogens of different sizes and positions in Hoffmeister series, Cl(-) and Br(-), and the highly hydrophobic inorganic anion PF(6)(-) throughout its whole solubility regime. The formation of water clusters in the mixture has been verified, and the influences of both anion hydrophobicity and cation chain length on the structure and size of these clusters have been analyzed. The water cluster size is shown to be relatively independent of the cation chain length, but strongly dependent on the hydrophobicity of the anion, which also determines critically the network formation of water and therefore the miscibility of the ionic liquid. The greater influence of the anion relative to the cation one is seen to be reflected in all the analyzed physical properties. Finally, single-particle dynamics in IL-water mixtures is considered, obtaining the self-diffusion coefficients and the velocity autocorrelation functions of water molecules in the mixture, and analyzing the effect of cation, anion, and water concentration on the duration of the ballistic regime and on the time of transition to the diffusive regime. Complex non-Markovian behavior was detected at intermediate times within an interval progressively shorter as water concentration increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp202692g | DOI Listing |
In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.
View Article and Find Full Text PDFChemSusChem
January 2025
Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.
A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
United States Geological Survey, Upper Midwest Water Science Center, Madison, WI, United States.
Aircraft anti-icers and pavement deicers improve the safety of airport operations during winter precipitation events. Runoff containing these products can contribute elevated biochemical oxygen demand (BOD) to receiving streams. We monitored runoff from Milwaukee Mitchell International Airport at one upstream site, three outfall sites, and one downstream site from 2005 to 2022 for BOD, chemical oxygen demand (COD), and freezing point depressants used in deicing and anti-icing fluids to determine the primary sources of BOD and COD in the receiving stream.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States.
The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
The contribution of the gut to the ingestion, production, absorption, and excretion of the extra ammonia and urea-N associated with feeding ("exogenous" fraction) has received limited prior attention. Analysis of commercial pellet food revealed appreciable concentrations of ammonia and urea-N. Long term satiation-feeding increased whole trout ammonia and urea-N excretion rates by 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!