The mechanism of an aerobic copper-catalyzed oxidative coupling reaction with N-phenyl tetrahydroisoquinoline was investigated. The oxidized species formed from the reaction of the amine with the copper catalyst were analyzed by NMR-spectroscopy. An iminium dichlorocuprate was found to be the reactive intermediate and could be structurally characterized by X-ray crystallography. The effect of methanol to effectively stabilize the iminium ion was investigated and shown to be beneficial in an oxidative allylation reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja201610c | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
The oxomolybdenum complexes Mo1, Mo2 and Mo3, which share a common ONO donor ligand backbone but differ in their peripheral substituents, were explored to study their reactivity in organic transformations in water. The ligand backbones of Mo1 and Mo2 were covalently linked to a methyl group and a single hydrophobic -hexadecyl chain an ether linkage, respectively. The complex Mo3 was found to possess two -hexadecyl chains attached to the ligand backbone a common amine-N.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.
An atmospheric oxygen-mediated oxidative coupling of primary and secondary alcohols for the synthesis of nitrogen-containing heterocycles has been developed. This method utilizes atmospheric oxygen as the sole, environmentally friendly oxidant to convert a variety of alkyl and aromatic primary alcohols into aldehyde equivalents, avoiding over-oxidation to carboxylic acids. Notably, these mild oxidation conditions are compatible with both primary and secondary alkyl alcohols as substrates.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Catalysis, Zhejiang University, Hangzhou 310027, China.
Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFMolecules
January 2025
College of Computer Science and Cyber Security (Pilot Software College), Chengdu University of Technology, Chengdu 610059, China.
The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO nanowires (TiO NWs) was performed. With metal loading, the electric and optical properties of TiO NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!