Here we provide the first experimental evidence that public concerns about the use of animals in research are accentuated when genetically modified (GM) animals are used. Using an online survey, we probed participant views on two uses of pigs as research animals (to reduce agricultural pollution or to improve organ transplant success in humans) with and without GM. We surveyed 327 animal technicians, researchers, advocates, university students and others. In both scenarios and across demographics, support dropped off when the research required the use of GM pigs or GM corn. For example, 66% of participants supported using pigs to reduce phosphorus pollution, but this declined to 49% when the pigs were fed GM corn and to 20% when the research required the creation of a new GM line of pigs. Those involved in animal research were more consistently supportive compared to those who were not or those who were vegetarians.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0963662510362834 | DOI Listing |
Genet Epidemiol
January 2025
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFOligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model.
View Article and Find Full Text PDFUnlabelled: A polygenic risk score (PRS) is used to quantify the combined disease risk of many genetic variants. For complex human traits there is interest in determining whether the PRS modifies, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!