Nucleotides released upon brain injury signal to astrocytes and microglia playing an important role in astrogliosis, but the participation of microglia in the purinergic modulation of astrogliosis is still unclear. Highly enriched astroglial cultures and co-cultures of astrocytes and microglia were used to investigate the influence of microglia in the modulation of astroglial proliferation mediated by nucleotides. In highly enriched astroglial cultures, adenosine-5'-triphosphate (ATP), adenosine 5'-O-(3-thio)-triphosphate (ATPγS), adenosine 5'-O-(3-thio)-diphosphate (ADPβS; 0.01-1 mM), and adenosine-5'-diphosphate (ADP; 0.1-1 mM) increased proliferation up to 382%, an effect abolished in co-cultures containing 8% of microglia. The loss of ATP proliferative effect in co-cultures is supported by its fast metabolism and reduced ADP accumulation, an agonist of P2Y(1,12) receptors that mediate astroglial proliferation. No differences in ADPβS and ATPγS metabolism or P2Y(1,12) receptors expression were found in co-cultures that could explain the loss of their proliferative effect. However, conditioned medium from microglia cultures or co-cultures treated with ADPβS, when tested in highly enriched astroglial cultures, also prevented ADPβS proliferative effect. None of the uracil nucleotides tested had any effect in proliferation of highly enriched astroglial cultures, but uridine-5'-triphosphate (UTP; 0.1-1 mM) inhibited proliferation up to 66% in co-cultures, an effect that was dependent on uridine-5'-diphosphate (UDP) accumulation, coincident with a co-localization of P2Y(6) receptors in microglia and due to cell apoptosis. The results indicate that microglia control astroglial proliferation by preventing the proliferative response to adenine nucleotides and favouring an inhibitory effect of UTP/UDP. Several microglial P2Y receptors may be involved by inducing the release of messengers that restrain astrogliosis, a beneficial effect for neuronal repair mechanisms following brain injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146643 | PMC |
http://dx.doi.org/10.1007/s11302-011-9235-x | DOI Listing |
Cell Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway. Electronic address:
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood.
View Article and Find Full Text PDFPeptides
January 2025
University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia. Electronic address:
Migration is an essential characteristic of cells that occurs during many physiological and pathological processes. Astrocytes represent the most abundant cell type in the adult central nervous system (CNS), that play a crucial role in various functions such as guiding and supporting neuronal migration during development and maintaining brain homeostasis at adulthood. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN).
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA. Electronic address:
Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETB) signaling.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yan Chang Road, Shanghai, 200072, PR China.
This study aimed to investigate the effects of O-linked N-acetylglucosamine modification (O-GlcNAcylation) on astroglial-mesenchymal transition through connexin43 (Cx43) pathway under high-glucose conditions. The primary rat astrocytes were cultured under normal and high-glucose conditions, and level of GFAP, α-SMA and Cx43 was investigated. To explore the influence of O-GlcNAcylation on astroglial-mesenchymal transition, Thiamet G treatment was employed to enhance O-GlcNAcylation, while Alloxan was used to decrease it.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
One of the main causes of poor prognoses in patient with glioblastoma (GBM) is drug resistance to current standard treatment, which includes chemoradiation and adjuvant temozolomide (TMZ). In addition, the concept of cancer stem cells provides new insights into therapy resistance and management also in GBM and glioblastoma stem cell-like cells (GSCs), which might contribute to therapy resistance. Bone morphogenetic protein-4 (BMP4) stimulates astroglial differentiation of GSCs and thereby reduces their self-renewal capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!