Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The glycoprotein, Syncytin-1, is encoded by a human endogenous retrovirus (HERV)-W env gene and is capable of inducing neuroinflammation. The specific allele(s) responsible for Syncytin-1 expression in the brain is uncertain. Herein, HERV-W env diversity together with Syncytin-1 abundance and host immune gene profiles were examined in the nervous system using a multiplatform approach.
Results: HERV-W env sequences were encoded by multiple chromosomal encoding loci in primary human neurons compared with less chromosomal diversity in astrocytes and microglia (p<0.05). HERV-W env RNA sequences cloned from brains of patients with systemic or neurologic diseases were principally derived from chromosomal locus 7q21.2. Within the same specimens, HERV-W env transcript levels were correlated with the expression of multiple proinflammatory genes (p<0.05). Deep sequencing of brain transcriptomes disclosed the env transcripts to be the most abundant HERV-W transcripts, showing greater expression in fetal compared with healthy adult brain specimens. Syncytin-1's expression in healthy brain specimens was derived from multiple encoding loci and linked to distinct immune and developmental gene profiles.
Conclusions: Syncytin-1 expression in the brain during disease was associated with neuroinflammation and was principally encoded by a full length provirus. The present studies also highlighted the diversity in HERV gene expression within the brain and reinforce the potential contributions of HERV expression to neuroinflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084769 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019176 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!