Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions.

Exp Biol Med (Maywood)

Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA.

Published: June 2011

Polo-like kinases (Plks) are a family of serine-threonine kinases that play a pivotal role in cell cycle progression and in cellular response to DNA damage. The Plks are highly conserved from yeast to mammals. There are five Plk family members (Plk1-5) in humans, of which Plk1, is the best characterized. The Plk1 isoform is being aggressively pursued as a target for cancer therapy, following observations that this protein is overexpressed in human tumors and is actively involved in malignant transformation. The roles of Plks in mitotic entry, spindle pole functions and cytokinesis are well established and have been the subject of several recent reviews. In this review, we discuss functions of Plks other than their classical roles in mitotic progression. When cells incur DNA damage, they activate checkpoint mechanisms that result in cell cycle arrest and allow time for repair. If the damage is extensive and cannot be repaired, cells will undergo cell death by apoptosis. If the damage is repaired, cells can resume cycling, as part of the process known as checkpoint recovery. If the damage is not repaired or incompletely repaired, cells can override the checkpoint and resume cycling with damaged DNA, a process called checkpoint adaptation. The Plks play a role in all three outcomes and their involvement in these processes will be the subject of this review.

Download full-text PDF

Source
http://dx.doi.org/10.1258/ebm.2011.011011DOI Listing

Publication Analysis

Top Keywords

dna damage
12
repaired cells
12
polo-like kinases
8
cell cycle
8
damage repaired
8
resume cycling
8
damage
6
checkpoint
5
plks
5
dna
4

Similar Publications

Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.

View Article and Find Full Text PDF

Synergistic effect of repurposed mitomycin C in combination with antibiotics against Aeromonas infection: In vitro and in vivo studies.

J Microbiol Immunol Infect

December 2024

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Background: Aeromonas infections pose a significant threat associated with high mortality rates. This study investigates the potential of mitomycin C (MMC), an anticancer drug, as a novel antimicrobial agent against Aeromonas infections.

Methods: We evaluated the minimum inhibitory concentrations (MICs) of MMC and antibiotics against clinical Aeromonas isolates using broth microdilution.

View Article and Find Full Text PDF

Induction of age-related ocular disorders in a mouse model of pulmonary fibrosis.

Exp Eye Res

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, P. R. China. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease linked to aging. This study investigates potential connections between IPF and age-related eye problems using a bleomycin-induced IPF mouse model. Intratracheal administration of bleomycin induces rapid lung injury in mice, followed by IPF with characteristics of cellular senescence.

View Article and Find Full Text PDF

Monocytic reactive oxygen species-induced T cell apoptosis impairs cellular immune response to SARS-CoV-2 mRNA vaccine.

J Allergy Clin Immunol

January 2025

Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:

Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.

Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.

View Article and Find Full Text PDF

Sub-lethal effects of innovative anti-corrosion nanoadditives on the marine bivalve Ruditapes philippinarum.

Environ Pollut

January 2025

CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.

Corrosion significantly affects the maritime industry. To address this issue, corrosion inhibitors are incorporated into polymeric coatings. However, some state-of-the-art inhibitors are toxic, prone to spontaneous leaching, and interact with coating components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!