We consider the relationship between the target affinity of a monoclonal antibody and its in vivo potency. The dynamics of the system is described mathematically by a target-mediated drug disposition model. As a measure of potency, we consider the minimum level of the free receptor following a single bolus injection of the ligand into the plasma compartment. From the differential equations, we derive two expressions for this minimum level in terms of the parameters of the problem, one of which is valid over the full range of values of the equilibrium dissociation constant K(D) and the other which is valid only for a large drug dose or for a small value of K(D). Both of these formulae show that the potency achieved by increasing the association constant k(on) can be very different from the potency achieved by decreasing the dissociation constant k(off). In particular, there is a saturation effect when decreasing k(off) where the increase in potency that can be achieved is limited, whereas there is no such effect when increasing k(on). Thus, for certain monoclonal antibodies, an increase in potency may be better achieved by increasing k(on) than by decreasing k(off).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2011.04.030 | DOI Listing |
J Mol Graph Model
December 2024
Post Graduate Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh, 160036, India.
A large population in the world lives in tropical and subtropical regions, showing a high risk of Zika viral infection which leads to a situation of global health emergency and demands extensive research to create effective antiviral medicines. Herein, we introduce the design of a new derivatized trans-stilbene molecule to investigate the inhibition of Zika virus entry into the host cell by molecular docking approach. The synthesized compound has been characterized by different analytical techniques such as FTIR, H NMR,C NMR and UV-visible spectroscopy as well as Mass spectrometry (MS).
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein, we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for the rapid identification of microbial natural products with both novel structures and potent activities.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain.
In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
BioMedical Systems Engineering Laboratory, Panoz Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland.
Stem cells have been widely used to produce artificial bone grafts. Nonetheless, the variability in the degree of stem cell differentiation is an inherent drawback of artificial graft development and requires robust evaluation tools that can certify the quality of stem cell-based products and avoid source-tissue-related and patient-specific variability in outcomes. Omics analyses have been utilised for the evaluation of stem cell attributes in all stages of stem cell biomanufacturing.
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China. Electronic address:
To explore potential anti-inflammatory lead compounds, ten new physalin steroids, including three neophysalins (1, 4, and 9) and seven physalins (2, 3, 5-8, and 10), along with eleven known analogs, were isolated from an ethanol extract of the calyx of Physalis alkekengi. The new structures were rigorously determined through comprehensive HRESIMS, 1D/2D-NMR, and X-ray diffraction analysis. Among these compounds, 1 was identified as a new 1,10-seco-neophysalin, and 2 was identified as a new 11,15-cyclo-9,10-seco-physalin characterized by an aromatic A-ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!