Stepwise condensation reactions of 2,6-dihydroxynaphthalene-1,5-dicarbaldehyde and a phenylenediamine with concomitant binding of metal ions afforded a trinuclear complex of a fully π-conjugated, fused salphen ligand. By changing the synthetic pathway, we obtained a series of homo- and heteronuclear complexes containing selected combinations of nickel(II) and zinc(II) ions. Comparison of the trinuclear complexes' spectroscopic features with those of analogous dinuclear complexes revealed that the absorption spectrum of each trinuclear complex is composed of a salphen-centered absorption at 400 nm and a naphthalene-centered absorption around 500-600 nm, suggesting that the π-conjugated system is divided into several compartments, each of which independently undergoes electronic excitation. Molecular orbital calculations revealed that the formal fusion of the salphen moieties increases the highest occupied molecular orbital (HOMO) level by ∼0.4 eV, which in turn causes the low-energy absorption observed in the spectra. In contrast, interorbital interactions mediated by the N(2)O(2) metal coordination site are small, even though this site is bridged by an o-phenylene linkage. These results suggest that the coordination site effectively breaks electronic communication between the compartments, which in turn affect various spectroscopic properties of the π-conjugated metallo-polysalphens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic200798d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!