Haplotyping of putative microRNA-binding sites in the SNAP-25 gene.

Electrophoresis

Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.

Published: August 2011

Synaptosomal-associated protein 25 (SNAP-25) plays a crucial role in exocitosis. Single nucleotide polymorphisms (rs3746544 and rs1051312) in the 3' un-translated region of the SNAP-25 gene have been described to be in association with attention-deficit hyperactivity disorder. As the disease affects millions of children world-wide, understanding the genetic background of attention-deficit hyperactivity disorder is of crucial importance. Efficient and reliable PCR-RFLP protocols were elaborated for the genotyping of the rs3746544 and rs1051312 SNPs employing a high-throughput capillary electrophoresis method for fragment analysis. A novel real-time PCR-based technique was used applying sequence specific TaqMan probes to haplotype the two SNPs, and the G-C haplotype could not be detected in a large Caucasian population (N=1376). These findings have been confirmed by molecular biology tools as well as by the PHASE Bayesian computational approach. In silico analyses have suggested that the two SNPs might alter microRNA binding and thus have an effect on SNAP-25 production. We have demonstrated that this biological information can be revealed only by direct haplotype analysis emphasizing the importance of our novel molecular haplotye analysis protocol. Results of the study of the two SNPs might shed light on the association of SNAP-25 variants and pathological phenotypes at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201000536DOI Listing

Publication Analysis

Top Keywords

snap-25 gene
8
rs3746544 rs1051312
8
attention-deficit hyperactivity
8
hyperactivity disorder
8
snap-25
5
haplotyping putative
4
putative microrna-binding
4
microrna-binding sites
4
sites snap-25
4
gene synaptosomal-associated
4

Similar Publications

Introduction: As with many genetic diseases, the diagnostic role of next-generation sequencing is invaluable for early-onset epileptic encephalopathies. SNARE proteins in synaptic vesicles (synaptobrevin-2) and synaptic plasma membrane (syntaxin-1, SNAP-25) are involved in synaptic exocytosis and recycling.

Patient Presentation: Here, we report a patient that started in early childhood with seizures resistant to antiepileptic drugs, then developed epileptic encephalopathy.

View Article and Find Full Text PDF

Persistent organic pollutants (POPs), which encompass pesticides and industrial chemicals widely utilized across the globe, pose a covert threat to human health. β-hexachlorocyclohexane (β-HCH) is an organochlorine pesticide with striking stability, still illegally dumped in many countries, and recognized as responsible for several pathogenetic mechanisms. This study represents a pioneering exploration into the neurotoxic effects induced by the exposure to β-HCH specifically targeting neuronal cells (N2a), microglia (BV-2), and C57BL/6 mice.

View Article and Find Full Text PDF

It is increasingly evident that blood biomarkers have potential to improve the diagnosis and management of both acute and chronic neurological conditions. The most well-studied candidates, and arguably those with the broadest utility, are proteins that are highly enriched in neural tissues and released into circulation upon cellular damage. It is currently unknown how the brain expression levels of these proteins is influenced by demographic factors such as sex, race, and age.

View Article and Find Full Text PDF

Objective: Migraine, a prevalent and debilitating disease, involves complex pathophysiology possibly including inflammation and heightened pain sensitivity. The current study utilized the complete Freund's adjuvant (CFA) model of inflammation, with onabotulinumtoxinA (BoNT/A) as a treatment of interest due to its use in clinical migraine management. Using an animal model, the study sought to investigate the role of BoNT/A in modulating CFA-induced inflammation, alterations in pain sensitivity, and the regulation of calcitonin gene-related peptide (CGRP) release.

View Article and Find Full Text PDF

Cysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!