To evaluate the efficacy and safety of dexamethasone-heparin-double-coated stent (DHDCS) on inhibition of artery lumen reduction and neointimal hyperplasia in porcine model we carried out this study. Bare mental stents (BMS, n = 12), protein-coated stents (PCS, n = 12), heparin microballoon-coated stents (HMCS, n = 12), and DHDCS (n = 12), prepared by the spray drying method, were implanted into the selected internal iliac artery, external iliac artery, sacrococcygeal artery, and femoral artery of each of the selected pigs (n = 12), which were randomly divided into four groups on average. Thirty days and ninety days after the implantation, aorta angiography was performed on all the 12 mini-pigs to evaluate the artery lumen reduction. Subsequently, in order to analyze their histological appearance, the pigs were killed, and their arteries with the stents inside were taken out, embedded in plastic for hard histological section and hematoxylin-eosin (H.E.) staining, and examined by light microscopy and scanning electron microscopy (SEM). The artery lumen reduction and average neointimal hyperplasia in the group of DHDCS were significantly lesser than those in the other three groups of BMS, PCS, and HMCS. This study shows that DHDCS is capable of inhibiting the proliferation of intima and lumen area reduction of the target artery within stents, and effectively and safely reducing the incidence of regional thrombosis and restenosis for a short term.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-011-4334-3DOI Listing

Publication Analysis

Top Keywords

artery lumen
12
lumen reduction
12
artery
9
dexamethasone-heparin-double-coated stent
8
inhibition artery
8
neointimal hyperplasia
8
iliac artery
8
stents
5
n = 12
5
vivo evaluation
4

Similar Publications

Template-Assisted Electrospinning and 3D Printing of Multilayered Hierarchical Vascular Grafts.

J Biomed Mater Res B Appl Biomater

January 2025

Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.

Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.

View Article and Find Full Text PDF

In-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated.

View Article and Find Full Text PDF

Takayasu arteritis is a well-established medical entity involving inflammatory changes in large arteries. We describe a characteristic case of Takayasu arteritis, in a young woman with significant renal artery stenosis, presenting with hypertensive urgency. Unsuccessful guide wire passage due to fibrotic septae in lumen of the left renal artery necessitated an innovative interventional approach, using an IMA-guide catheter and a UB3 coronary guidewire to cross the lesions, followed by placement of a coronary drug eluting stent, with an aim to avoid restenosis.

View Article and Find Full Text PDF

Background: Left main coronary bifurcation lesions account for 50% of left main coronary artery disease cases. Although a drug-coated balloon (DCB) has the advantages of immediate release of the drug to the arterial wall and no remaining struts, there is no conclusive evidence to support DCB use.

Methods & Results: We conducted a systematic review in compliance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement.

View Article and Find Full Text PDF

Current state of epigenetics in giant cell arteritis: Focus on microRNA dysregulation.

Autoimmun Rev

December 2024

Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. Electronic address:

Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!