AI Article Synopsis

  • Autophagy, a stress response, is being studied in human cancers, specifically focusing on the genes Beclin-1 and LC3, which have not been previously examined in lung cancer.
  • In this study, the expression of Beclin-1 and LC3 in 40 primary lung cancer patients was measured through various methods including Real Time PCR and western blotting.
  • Results showed lower levels of both Beclin-1 and LC3-II in lung cancer tissues compared to normal tissues, indicating that autophagy might play a role in lung cancer development, independent of patient demographics and cancer stage.

Article Abstract

Autophagy, a conversed response to stress, has recently been studied in human cancers. Two important autophagic genes-Beclin-1 and LC3 are reported in several human cancers. However, the expressions of Beclin-1 and LC3 in lung cancer have not yet been investigated. In the present study, we investigated the expression of Beclin-1 and LC3, and the relationship between the expression profile and the clinical or pathological changes in human lung cancer. 40 primary lung cancer patients are involved in present study. mRNA expressions of Beclin-1 and LC3-II were detected by Real Time PCR and the protein levels were assessed by immunohistochemistry and western blot. Relative lower expressions of Beclin-1 and LC3-II mRNA were found in the lung cancer tissues compared to counterpart normal tissues. Consistently, the lower amount of Beclin-1 and LC3-II protein was found in lung cancer tissues. However, the expressions of Beclin-1 and LC3-II in lung cancer tissues were not affected by patients' age, gender, smoking, histological type, lymph node metastasis and tumor-node-metastasis (TNM) stage. Both mRNA and protein levels of Beclin-1 and LC3-II were significantly decreased in lung cancer tissues which suggested that autophagy may be involved in the pathogenesis of lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-011-0734-1DOI Listing

Publication Analysis

Top Keywords

lung cancer
36
beclin-1 lc3-ii
20
expressions beclin-1
16
cancer tissues
16
beclin-1 lc3
12
lung
9
cancer
9
beclin-1
8
expression beclin-1
8
human lung
8

Similar Publications

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.

View Article and Find Full Text PDF

Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.

View Article and Find Full Text PDF

Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.

View Article and Find Full Text PDF

TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury.

J Clin Invest

January 2025

Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.

Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!