Release of arachidonic acid metabolites (eicosanoids) by alveolar macrophages may be important in regulating pulmonary inflammatory reactions. The purpose of this study was to characterize eicosanoids released by rat alveolar macrophages during the evolution of experimentally induced pulmonary inflammation. Immunization with subcutaneous bacillus Calmette-Guerin (BCG) followed 2 wk later by intravenous BCG challenge resulted in mild granulomatous pulmonary inflammation for up to 30 days. At serial intervals, alveolar macrophages were lavaged from the BCG-treated rats as well as from control normal rats. Lavaged macrophages were cultured in vitro, and culture supernatants were assayed by radioimmunoassay for release of prostaglandin E2 (PGE2), Leukotriene B4 (LTB4), and thromboxane B2 (TXB2). Cells were cultured alone, or with added LPS or calcium ionophore A23187 to stimulate eicosanoid release. During BCG-induced inflammation, spontaneous release of PGE2 and LTB4 was unchanged, while spontaneous release of TXB2 was depressed acutely and then returned to control levels. The capacity of alveolar macrophages to release specific eicosanoids in response to an in vitro stimulus was dramatically altered during the course of BCG-induced inflammation. Stimulated release of PGE2 was transiently increased during acute lung injury, but stimulated release of LTB4 was significantly decreased at all stages of inflammation. Stimulated release of TXB2 was unchanged. These results indicate that during the course of granulomatous pulmonary inflammation there are dynamic changes in the profile of eicosanoids released by alveolar macrophages, both spontaneously and in response to in vitro stimulation. This alteration in the release of eicosanoids by alveolar macrophages may be an important factor in the resolution of pulmonary inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1165/ajrcmb/2.3.289DOI Listing

Publication Analysis

Top Keywords

alveolar macrophages
28
pulmonary inflammation
20
granulomatous pulmonary
12
stimulated release
12
release
10
release eicosanoids
8
rat alveolar
8
macrophages
8
inflammation
8
eicosanoids alveolar
8

Similar Publications

Improved Annotation of Asthma Gene Variants with Cell Type Deconvolution of Nasal and Lung Expression-Quantitative Trait Loci.

Am J Respir Cell Mol Biol

January 2025

University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.

Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.

View Article and Find Full Text PDF

Introduction: Cellular characteristics of induced sputum (IS) are not investigated in cystic fibrosis (CF) patients.

Objectives: This pilot study, conducted on 17 expectorating CF adolescents, compared sputa obtained the same day, in a stable period, by autogenic drainage (expectorating sputum, ES) and 4 h later after inhaling hypertonic saline (IS).

Results: No difference was noted concerning weight, volume, and percentage of dead cells between the two collection methods.

View Article and Find Full Text PDF

Identification and Validation of SPP1 as a Potential Biomarker for COPD Through Comprehensive Bioinformatics Analysis.

Respir Med

January 2025

Department of Nursing, Hungkuang University, Taichung City, Taiwan; Department of Orthopedics, Changhua Christian Hospital, Changhua City, Taiwan. Electronic address:

Background: Chronic Obstructive Pulmonary Disease (COPD) is a challenging respiratory condition characterized by persistent airflow limitation and progressive lung function decline. The identification of robust biomarkers is crucial for early diagnosis, monitoring disease progression, and guiding therapeutic strategies.

Methods: In this study, we employed a comprehensive bioinformatics approach utilizing multiple Gene Expression Omnibus (GEO) datasets to identify potential COPD biomarkers.

View Article and Find Full Text PDF

Ozone (O) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O exposure (0.

View Article and Find Full Text PDF

Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!