The generation of ultrashort vacuum UV (VUV) pulses by nondegenerate cascaded four-wave mixing of femtosecond pulses in a thin slide of a large band-gap transparent solid is numerically demonstrated. Using a novel noncollinear multiple-beam configuration, cascaded four-wave mixing of amplified 30 fs Ti:sapphire laser pulses at 800 nm, and their second harmonic in lithium fluoride results in the generation of VUV radiation down to 134 nm with energies in the μJ range and durations comparable to those of the pump pulses. The proposed geometry is advantageous in large dispersion scenarios, namely for generating radiation close to absorption bands. Hence these results set this technique as a promising way to efficiently generate ultrashort VUV radiation in solids for several applications in science and technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.50.001968 | DOI Listing |
Phys Rev Lett
December 2024
Weizmann Institute of Science, Rehovot 7610001, Israel.
We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.
View Article and Find Full Text PDFMultiple coherent radiations are achieved in a water-3-aminopropanol (3AP) mixed solution through cascaded four-wave mixing (C-FWM) and cascaded Stokes (C-Stokes) processes, both driven by stimulated Raman scattering (SRS) in this work. The O-H vibration peak from water is replaced by the emergence of the -NH symmetric stretching Raman peaks from 3AP, with intensity approaching that of the -CH symmetric stretching peak. The dual-wavelength SRS signals for the -NH and -CH stretching vibrations have a relatively small frequency interval of about 400 cm (16 nm).
View Article and Find Full Text PDFNanophotonics
August 2024
School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
High-order wave mixing in solid-state platforms gather increasing importance due to the development of advanced lasers and integrated photonic circuit for both classical and quantum information. However, the high-order wave mixing is generally inefficient in solids under weak pump. Here, we observed the presence of phase matching of five-wave mixing (5WM) propagating in a zinc oxide (ZnO) microwire.
View Article and Find Full Text PDFWe experimentally realize the enhancement of six-beam quantum squeezing by utilizing a six-beam phase-sensitive amplifier (PSA) based on cascaded four-wave mixing processes. Compared to the intensity-difference squeezing (IDS) of about 5.03 or 5.
View Article and Find Full Text PDFWe report on multi-wavelength generation through simultaneous second-order and third-order nonlinear parametric processes following cascaded stimulated Raman scattering (SRS) in silica fibers. The fiber system consists of a short standard step-index silica fiber and a microfiber tapered from it. When this system is pumped with a 130 ps laser at 1040 nm, multiple new wavelengths in the UV (340-370 nm) and green (507-547 nm) bands arise through four-wave mixing (FWM)/sum-frequency generation (SFG) from the pump and its Raman signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!