When planning grasping actions, right-handers show left-lateralized responses in the anterior intraparietal sulcus (aIPS) and ventral premotor cortex (vPMC), two areas that are also implicated in sensorimotor control of grasp. We investigated whether a similar cerebral asymmetry is evident in strongly left-handed individuals. Fourteen participants were trained to grasp an object appearing in a variety of orientations with their left and right hands and with a novel mechanical tool (operated with either hand). BOLD fMRI data were then acquired while they decided prospectively whether an over- or under-hand grip would be most comfortable for grasping the same stimulus set while remaining still. Behavioral performances were equivalent to those recorded previously in right-handers and indicated reliance on effector-specific internal representations. In left-handers, however, grip selection decisions for both sides (left, right) and effectors (hand, tool) were associated with bilateral increases in activity within aIPS and vPMC. A direct comparison between left- and right-handers did reveal equivalent increases in left vPMC regardless of hand dominance. By contrast, aIPS and right vPMC activity were dependent on handedness, showing greater activity in the motor-dominant hemisphere. Though showing bilateral increases in both left- and right-handers, greater increases in the motor dominant hemisphere were also detected in the caudal IPS (cIPS), superior parietal lobule (SPL) and dorsal premotor cortex (dPMC). These findings provide further evidence that regions involved in the sensorimotor control of grasp also participate in grasp planning, and that for certain areas hand dominance is a predictor of the cerebral organization of motor cognitive functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114104PMC
http://dx.doi.org/10.1016/j.neuroimage.2011.04.036DOI Listing

Publication Analysis

Top Keywords

premotor cortex
12
anterior intraparietal
8
intraparietal sulcus
8
ventral premotor
8
grasp planning
8
sensorimotor control
8
control grasp
8
bilateral increases
8
aips vpmc
8
left- right-handers
8

Similar Publications

Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.

View Article and Find Full Text PDF

The primary motor cortex (M1) is believed to be a cortical center for the execution of limb movements. Although M1 neurons mainly project to the spinal cord on the contralateral side, some M1 neurons project to the ipsilateral side via the uncrossed corticospinal pathway. Moreover, some M1 neurons are activated during ipsilateral forelimb movements.

View Article and Find Full Text PDF

Alpha6-containing GABA receptors - Novel targets for the treatment of schizophrenia.

Pharmacol Res

January 2025

Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria. Electronic address:

α6-containing GABA receptors (α6GABARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow.

View Article and Find Full Text PDF

Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear.

View Article and Find Full Text PDF

Background: The perception of Subjective Visual Vertical (SVV) is crucial for postural orientation and significantly reflects an individual's postural control ability, relying on vestibular, visual, and somatic sensory inputs to assess the Earth's gravity line. The neural mechanisms and aging effects on SVV perception, however, remain unclear.

Objective: This study seeks to examine aging-related changes in SVV perception and uncover its neurological underpinnings through functional near-infrared spectroscopy (fNIRS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!