Preconditioning-induced ischemic tolerance has been documented in the newborn brain, however, the signaling mechanisms of this preconditioning require further elucidation. The aims of this study were to develop a hypoxic-preconditioning (PC) model of ischemic tolerance in the newborn piglet, which emulates important clinical similarities to human situation of birth asphyxia, and to characterize some of the molecular mechanisms shown to be implicated in PC-induced neuroprotection in rodent models. One day old piglets were subjected to PC (8% O2/92% N2) for 3 h and 24 h later were exposed to hypoxia-ischemia (HI) produced by a combination of hypoxia (5% FiO2) for a period of 30 min and ischemia induced by a period of hypotension (10 min of reduced mean arterial blood pressure; ≤70% of baseline). Neuropathologic analysis and unbiased stereology, conducted at 24 h, 3 and 7 days of recovery following HI, indicated a substantial reduction in the severity of brain damage in PC piglets compared to non-PC piglets (P<0.05). PC significantly increased the mRNA expression of hypoxia-inducible factor-1α (HIF-1α) and its target gene, vascular endothelial growth factor (VEGF) at 0 h, 6h, 24 h, 3 and 7 days of recovery. Immunoblot analysis demonstrated that PC resulted in HIF-1α protein stabilization and accumulation in nuclear extracts of cerebral cortex of newborn piglet brain compared to normoxic controls. Protein levels of VEGF increased in a time-dependent manner in both cortex and hippocampus following PC. Double-immunolabeling indicated that VEGF is mainly expressed in neurons, endothelial cells and astroglia. Our study demonstrates for the first time the protective efficacy of PC against hypoxic-ischemic injury in newborn piglet model, which recapitulates many pathophysiological features of asphyxiated human neonates. Furthermore, as has been shown in rodent models of preconditioning, our results suggest that PC-induced protection in neonatal piglets may involve upregulation of VEGF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2011.04.021 | DOI Listing |
Resusc Plus
January 2025
Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada.
Background: Epinephrine is currently the only recommended cardio-resuscitative medication for use in neonatal cardiopulmonary resuscitation (CPR), as per consensus of science and treatment recommendations. An alternative medication, vasopressin, may be beneficial, however there is limited data regarding its effect on cardiac and brain tissue following recovery from neonatal CPR.
Aim: To compare the effects of vasopressin and epinephrine during resuscitation of asphyxiated post-transitional piglets on cardiac and brain tissue injury.
Virulence
December 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
Vaccine
December 2024
Infectious Disease Immunology, Center for Vaccine Research, SSI, Copenhagen, Denmark. Electronic address:
Mucosal secretory IgA (SIgA) produced by subepithelial plasma cells in the lamina propria is the major antigen-specific defense mechanism against mucosal infections. We investigated if a retinoic acid (RA)-containing adjuvant in parenteral immunization, can induce vaccine-specific SIgA in the jejunal lumen in a dose-dependent manner in neonatal pigs immunized with a Chlamydia hybrid antigen. To accurately quantify SIgA responses in mucosal secretions, an antigen-specific ELISA method with secondary detection of porcine secretory component rather than IgA was developed.
View Article and Find Full Text PDFSci Rep
December 2024
Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria.
The early microbial colonization of the porcine gut is an important priming factor for gut and immune development. Nevertheless, little is known about the composition of microbes that translocate into the ileo-cecal lymph nodes (ICLN) in the neonatal phase. This study aimed to characterize age- and nutrition-related changes in the metabolically active bacterial and fungal composition of the ICLN in suckling and newly weaned piglets.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
Maternal nutritional supplementation has a profound effect on the growth and development of offspring. FAM is produced by co-cultivation of Lactobacillus acidophilus and Bacillus subtilis and has been demonstrated to potentially alleviate diarrhea, improve growth performance and the intestinal barrier integrity of weaned piglets. This study aimed to explore how maternal FAM improves the reproductive performance through mother-infant microbiota, colostrum and placenta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!