The activity of hemimethylated herpes simplex virus thymidine kinase DNA and chromatin was analyzed by microinjection and thymidine incorporation into the DNA of thymidine kinase-negative Rat2 cells. Hemimethylated DNA was obtained by in vitro replication of single-stranded M13 DNA constructs and of chromatin produced by in vitro reconstitution of the DNA with purified chicken histone octamers. We found that methylation of either the coding or the noncoding DNA strand was sufficient to block expression of the hemimethylated chromatin. In contrast, the hemimethylated DNA was as active as the unmethylated control DNA after microinjection until chromatin formation occurred in the recipient cells. Microinjection of chromatin hemimethylated by bacterial Hae III methyltransferase excluded the possibility that inactivation was caused by symmetrical methylation of the injected molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC53548 | PMC |
http://dx.doi.org/10.1073/pnas.87.5.1691 | DOI Listing |
ACS Nano
January 2025
Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.
View Article and Find Full Text PDFJ Biomol Struct Dyn
March 2025
Department of Chemistry, Jamia Millia Islamia, New Delhi, India.
1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.
View Article and Find Full Text PDFACS Sens
January 2025
College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
Introduction: (Hook.f. & Thomson) H.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!