A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crosstalk Signalling Role in Modulation of Drugs Side Effects. | LitMetric

Tumorigenesis is regulated by the complex cell-matrix signalling interactions that incorporate feedback mechanisms from constantly evolving microenvironments. Under normal circumstances, these matrix signalling processes together with infiltrating immune cells tightly control the extent of tissue remodelling. They are the key elements of regulated homeostatic repair of local matrix architecture and biological function. In contrast, the pathological tumorigenesis employing similar mechanisms and cellular components to change cellular phenotype promoting proliferation and transformation. However, there is a significant knowledge gap in our understanding about the network integration of different matrix induced signalling processes and their connection to drug side effects. Using epithelial tumorigenesis as a model system, we show that drug actions and pathological conditions are associated with crosstalk signalling mechanisms. These processes functionally integrate microenvironmental cues and generate representative gene expression profiles that are different from those generated by the native ligand-driven signalling mechanisms. Particularly in this review, we are focusing on crosstalk signalling processes that are sensitive to transforming growth factor receptor type I (TbRI) inhibitor A83-01 (3-(6-Methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-1H-pyrazole-1-carbothioamide). This process is affecting inflammatory gene expression, epithelial to mesenchymal transition, migration, proliferation, and changes in metastatic gene expressional patterns. As a result, phenotypic and functional modifications to cells and their immediate microenvironments are unavoidable. Here we demonstrate that future screening strategies for unintended drug side effects from molecular to systemic levels would benefit from future crosstalk signalling analysis. Thorough analysis could be used to forecast the diverse and highly variable gene expression patterns caused by pathological microenvironmental conditions which become apparent only in larger patient populations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

crosstalk signalling
16
side effects
12
signalling processes
12
gene expression
12
drug side
8
signalling mechanisms
8
signalling
7
crosstalk
4
signalling role
4
role modulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!