The glycolipid transfer protein (GLTP) superfamily is defined by the human GLTP fold that represents a novel motif for lipid binding and transfer and for reversible interaction with membranes, i.e., peripheral amphitropic proteins. Despite limited sequence homology with human GLTP, we recently showed that HET-C2 GLTP of Podospora anserina is organized conformationally as a GLTP fold. Currently, insights into the folding stability and conformational states that regulate GLTP fold activity are almost nonexistent. To gain such insights into the disulfide-less GLTP fold, we investigated the effect of a change in pH on the fungal HET-C2 GLTP fold by taking advantage of its two tryptophans and four tyrosines (compared to three tryptophans and 10 tyrosines in human GLTP). pH-induced conformational alterations were determined by changes in (i) intrinsic tryptophan fluorescence (intensity, emission wavelength maximum, and anisotropy), (ii) circular dichroism over the near-UV and far-UV ranges, including thermal stability profiles of the derivatized molar ellipticity at 222 nm, (iii) fluorescence properties of 1-anilinonaphthalene-8-sulfonic acid, and (iv) glycolipid intermembrane transfer activity monitored by Förster resonance energy transfer. Analyses of our recently determined crystallographic structure of HET-C2 (1.9 Å) allowed identification of side chain electrostatic interactions that contribute to HET-C2 GLTP fold stability and can be altered by a change in pH. Side chain interactions include numerous salt bridges and interchain cation-π interactions, but not intramolecular disulfide bridges. Histidine residues are especially important for stabilizing the local positioning of the two tryptophan residues and the conformation of adjacent chains. Induction of a low-pH-induced, molten globule-like state inhibited glycolipid intermembrane transfer by the HET-C2 GLTP fold.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134308 | PMC |
http://dx.doi.org/10.1021/bi200382c | DOI Listing |
Methods Mol Biol
December 2024
The Hormel Institute, University of Minnesota, Austin, MN, USA.
Herein, we describe a straightforward, easy method for generating stable lipid bilayer vesicle nanoparticles and show their usefulness for efficient in vitro tracking of lipid intermembrane transfer activity. Bilayer model membrane discs, i.e.
View Article and Find Full Text PDFCan J Physiol Pharmacol
October 2023
Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México.
Ganglionic long-term potentiation (gLTP) in the rat superior cervical ganglion (SCG) is differentially modulated by neurotrophic factors (Nts): brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). KCNQ/M channels, key regulators of neuronal excitability, and firing pattern are modulated by Nts; therefore, they might contribute to gLTP expression and to the Nts-dependent modulation of gLTP. In the SCG of rats, we characterized the presence of the KCNQ2 isoform and the effects of opposite KCNQ/M channel modulators on gLTP in control condition and under Nts modulation.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
January 2023
Department of Foundational Sciences & Research, East Carolina School of Dental Medicine, Greenville, NC; and.
The over-expression of Ren -2 d gene in (mRen2)27 rats leads to development of hypertension mediated by the renin-angiotensin-system axis and exaggerated sympathetic nerve activity. Exogenously applied angiotensin II (AngII) on the superior cervical ganglion evokes ganglionic compound action potentials (gCAP) and ganglionic long-term potentiation (gLTP). We studied the functional role of angiotensin receptors and expression of reactive oxygen species marker, nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) proteins in AngII-induced postganglionic transmission.
View Article and Find Full Text PDFJ Lipid Res
January 2022
Hormel Institute, University of Minnesota, Austin, MN, USA. Electronic address:
Lipid transfer proteins acquire and release their lipid cargoes by interacting transiently with source and destination biomembranes. In the GlycoLipid Transfer Protein (GLTP) superfamily, the two-layer all-α-helical GLTP-fold defines proteins that specifically target sphingolipids (SLs) containing either sugar or phosphate headgroups via their conserved but evolutionarily-modified SL recognitions centers. Despite comprehensive structural insights provided by X-ray crystallography, the conformational dynamics associated with membrane interaction and SL uptake/release by GLTP superfamily members have remained unknown.
View Article and Find Full Text PDFJ Biol Chem
August 2021
Hormel Institute, University of Minnesota, Austin, Minnesota, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!