The glycolipid transfer protein (GLTP) superfamily is defined by the human GLTP fold that represents a novel motif for lipid binding and transfer and for reversible interaction with membranes, i.e., peripheral amphitropic proteins. Despite limited sequence homology with human GLTP, we recently showed that HET-C2 GLTP of Podospora anserina is organized conformationally as a GLTP fold. Currently, insights into the folding stability and conformational states that regulate GLTP fold activity are almost nonexistent. To gain such insights into the disulfide-less GLTP fold, we investigated the effect of a change in pH on the fungal HET-C2 GLTP fold by taking advantage of its two tryptophans and four tyrosines (compared to three tryptophans and 10 tyrosines in human GLTP). pH-induced conformational alterations were determined by changes in (i) intrinsic tryptophan fluorescence (intensity, emission wavelength maximum, and anisotropy), (ii) circular dichroism over the near-UV and far-UV ranges, including thermal stability profiles of the derivatized molar ellipticity at 222 nm, (iii) fluorescence properties of 1-anilinonaphthalene-8-sulfonic acid, and (iv) glycolipid intermembrane transfer activity monitored by Förster resonance energy transfer. Analyses of our recently determined crystallographic structure of HET-C2 (1.9 Å) allowed identification of side chain electrostatic interactions that contribute to HET-C2 GLTP fold stability and can be altered by a change in pH. Side chain interactions include numerous salt bridges and interchain cation-π interactions, but not intramolecular disulfide bridges. Histidine residues are especially important for stabilizing the local positioning of the two tryptophan residues and the conformation of adjacent chains. Induction of a low-pH-induced, molten globule-like state inhibited glycolipid intermembrane transfer by the HET-C2 GLTP fold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134308PMC
http://dx.doi.org/10.1021/bi200382cDOI Listing

Publication Analysis

Top Keywords

gltp fold
28
het-c2 gltp
16
human gltp
12
gltp
11
folding stability
8
glycolipid transfer
8
transfer protein
8
fold
8
molten globule-like
8
globule-like state
8

Similar Publications

Herein, we describe a straightforward, easy method for generating stable lipid bilayer vesicle nanoparticles and show their usefulness for efficient in vitro tracking of lipid intermembrane transfer activity. Bilayer model membrane discs, i.e.

View Article and Find Full Text PDF

Long-term potentiation and its neurotrophin-dependent modulation in the superior cervical ganglion of the rat are influenced by KCNQ channel function.

Can J Physiol Pharmacol

October 2023

Departamento de Biología Celular & Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.U., Coyoacán 04510, Ciudad de México, México.

Ganglionic long-term potentiation (gLTP) in the rat superior cervical ganglion (SCG) is differentially modulated by neurotrophic factors (Nts): brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). KCNQ/M channels, key regulators of neuronal excitability, and firing pattern are modulated by Nts; therefore, they might contribute to gLTP expression and to the Nts-dependent modulation of gLTP. In the SCG of rats, we characterized the presence of the KCNQ2 isoform and the effects of opposite KCNQ/M channel modulators on gLTP in control condition and under Nts modulation.

View Article and Find Full Text PDF

The over-expression of Ren -2 d gene in (mRen2)27 rats leads to development of hypertension mediated by the renin-angiotensin-system axis and exaggerated sympathetic nerve activity. Exogenously applied angiotensin II (AngII) on the superior cervical ganglion evokes ganglionic compound action potentials (gCAP) and ganglionic long-term potentiation (gLTP). We studied the functional role of angiotensin receptors and expression of reactive oxygen species marker, nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) proteins in AngII-induced postganglionic transmission.

View Article and Find Full Text PDF

Lipid transfer proteins acquire and release their lipid cargoes by interacting transiently with source and destination biomembranes. In the GlycoLipid Transfer Protein (GLTP) superfamily, the two-layer all-α-helical GLTP-fold defines proteins that specifically target sphingolipids (SLs) containing either sugar or phosphate headgroups via their conserved but evolutionarily-modified SL recognitions centers. Despite comprehensive structural insights provided by X-ray crystallography, the conformational dynamics associated with membrane interaction and SL uptake/release by GLTP superfamily members have remained unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Ceramide-1-phosphate transfer proteins (CPTPs) are key players in moving ceramide-1-phosphate (C1P) between membranes, influencing cellular processes like inflammation and cell death.
  • The study found that certain phosphoinositides, particularly phosphatidylinositol 4,5 bisphosphate (PI-(4,5)P), enhance CPTP activity and membrane targeting, while others do not.
  • The research identified specific di-arginine motifs in CPTP that interact with PI-(4,5)P, suggesting these sites are crucial for the protein's function in regulating sphingolipid levels and related cellular responses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!