Frontier residues lining globin internal cavities present specific mechanical properties.

J Am Chem Soc

Laboratoire de Biochimie Théorique, UMR 9080 CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.

Published: June 2011

The internal cavity matrix of globins plays a key role in their biological function. Previous studies have already highlighted the plasticity of this inner network, which can fluctuate with the proteins breathing motion, and the importance of a few key residues for the regulation of ligand diffusion within the protein. In this Article, we combine all-atom molecular dynamics and coarse-grain Brownian dynamics to establish a complete mechanical landscape for six different globins chain (myoglobin, neuroglobin, cytoglobin, truncated hemoglobin, and chains α and β of hemoglobin). We show that the rigidity profiles of these proteins can fluctuate along time, and how a limited set of residues present specific mechanical properties that are related to their position at the frontier between internal cavities. Eventually, we postulate the existence of conserved positions within the globin fold, which form a mechanical nucleus located at the center of the cavity network, and whose constituent residues are essential for controlling ligand migration in globins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja202587aDOI Listing

Publication Analysis

Top Keywords

internal cavities
8
specific mechanical
8
mechanical properties
8
frontier residues
4
residues lining
4
lining globin
4
globin internal
4
cavities specific
4
mechanical
4
properties internal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!