Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Methylisothiocyanate (CH(3)NCS) was photolyzed at 193 and 248 nm, and the resulting time-resolved infrared emission was observed. Similar experiments were performed on methylthiocyanate (CH(3)SCN) photolyzed at 193 nm. Previous work suggested that these isomers undergo excited-state isomerization prior to dissociation, but other experiments have contradicted this claim. In the infrared emission experiments, we observed the same products from both starting materials, supporting the theory of excited-state isomerization prior to dissociation. Methylisothiocyanate is the active ingredient in a widely used pesticide and has been observed to form highly toxic methyl isocyanate (CH(3)NCO) under environmental conditions. The mechanism for this formation has been unclear, but must involve some oxygen-containing species. At 248 nm, methylisothiocyanate was photolyzed alone and with three atmospheric oxidizers: O(2), NO, and NO(2). No chemical reaction was observed with O(2), whereas secondary reactions were observed with NO and NO(2). When methylisothiocyanate was photolyzed with NO(2), methyl isocyanate (CH(3)NCO) was observed, suggesting a likely environmental mechanism for methyl isocyanate formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp2000305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!