A human fundus transverse microscopic imaging system based on a MEMS deformable membrane mirror was developed. A 37 element small MEMS deformable membrane mirror was used as wave front corrector in this system. Wavefront errors were measured by a Hartman-Shack wave front sensor which contains 127 micro lens lets. After the wavefront error of human eye had been corrected by the deformable membrane mirror under the control of a computer, the imaging illumination light was triggered by a electronic shutter to illuminate the retina, the images were captured by a CCD camera. It has been showed in model eye's test that the system could measure and correct the eye's wavefront aberration efficiently. The fundus image achieved the diffraction limit after aberration correction. It was showed in clinic that except a few patients with turbid eye, most patients could finish the process of measuring and correcting wavefront aberration and then taking fundus image. The examination process could be finished safely, quickly and reliably.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!