Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans.

Cell Stress Chaperones

Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, São Paulo, Brazil.

Published: September 2011

Heat shock proteins are molecular chaperones linked to a myriad of physiological functions in both prokaryotes and eukaryotes. In this study, we show that the Aspergillus nidulans hsp30 (ANID_03555.1), hsp70 (ANID_05129.1), and hsp90 (ANID_08269.1) genes are preferentially expressed in an acidic milieu, whose expression is dependent on the palA (+) background under optimal temperature for fungal growth. Heat shock induction of these three hsp genes showed different patterns in response to extracellular pH changes in the palA(+) background. However, their accumulation upon heating for 2 h was almost unaffected by ambient pH changes in the palA (-) background. The PalA protein is a member of a conserved signaling cascade that is involved in the pH-mediated regulation of gene expression. Moreover, we identified several genes whose expression at pH 5.0 is also dependent on the palA (+) background. These results reveal novel aspects of the heat- and pH-sensing networks of A. nidulans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156257PMC
http://dx.doi.org/10.1007/s12192-011-0267-5DOI Listing

Publication Analysis

Top Keywords

heat shock
12
pala background
12
pala protein
8
aspergillus nidulans
8
dependent pala
8
pala
5
transcription hsp30
4
hsp30 hsp70
4
hsp70 hsp90
4
hsp90 heat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!