Brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is a neuronal adhesion molecule that is highly expressed in cerebellar granule neurons (CGNs); however its function in CGNs remains unclear. Our previous studies indicated that BIT/SHPS-1 is able to modulate the antiapoptotic effect of brain-derived neurotrophic factor (BDNF) on CNS neurons by cell type-specific mechanisms. In this article, we have studied the role of BIT/SHPS-1 in the antiapoptotic function of BDNF on low potassium (LK)-induced cell death of cultured CGNs which is an in vitro model system of neuronal apoptosis during brain development. Cultured rat CGNs were transduced with wild-type rat BIT/SHPS-1 (BIT/SHPS-1(WT)), its 4F-mutant (BIT/SHPS-1(4F), in which all cytoplasmic tyrosine residues were substituted with phenylalanine), or nuclear localization signal-attached beta-galactosidase (NLS-LacZ, as control)-expressing adenoviruses. Expression of BIT/SHPS-1(WT) and BIT/SHPS-1(4F) alone did not affect steady-state cell viability. Tyrosine phosphorylation of BIT/SHPS-1 was only detected in BIT/SHPS-1(WT)-expressing cultures in the presence and the absence of BDNF. When subjected to LK in the presence of BDNF, BIT/SHPS-1(WT)- and BIT/SHPS-1(4F)-expressing cultures showed a significant resistance to cell death, while the control virus-transfected culture did not. In addition, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, attenuated the antiapoptotic effect of BDNF on BIT/SHPS-1(WT)-, and BIT/SHPS-1(4F)-expressing cultures. These results demonstrated that in both tyrosine phosphorylation-independent and PI3-K-dependent manners, BIT/SHPS-1 promotes the antiapoptotic effect of BDNF on the LK-induced cell death of CGNs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-011-9700-7DOI Listing

Publication Analysis

Top Keywords

cell death
16
antiapoptotic bdnf
12
bit/shps-1 promotes
8
promotes antiapoptotic
8
bdnf low
8
death cultured
8
cerebellar granule
8
granule neurons
8
lk-induced cell
8
bdnf bit/shps-1wt-
8

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!