Shear thickening of F-actin networks crosslinked with non-muscle myosin IIB.

Soft Matter

Institute for Biophysical Dynamics, University of Chicago, Gordon Center for Integrative Science, E233, 929 E 57th St, Chicago, IL, 60637, USA.

Published: January 2011

The material properties of cytoskeletal F-actin networks facilitate a broad range of cellular behaviors, whereby in some situations cell shape is preserved in the presence of force and, at other times, force results in irreversible shape change. These behaviors strongly suggest that F-actin networks can variably deform elastically or viscously. While a significant amount is known about the regulation of the elastic stiffness of F-actin networks, our understanding of the regulation of viscous behaviors of F-actin networks is largely lacking. Here, we study the rheological behavior of F-actin networks formed with heavy meromyosin non-muscle IIB (NMMIIB). We show that NMMIIB quenched with ADP crosslinks F-actin into networks that, for sufficient densities, display stress stiffening behavior. By performing a series of creep tests, we show that densely crosslinked actin/NMMIIB-ADP networks undergo viscous deformation over a wide range of stresses, ranging from 0.001 to 10 Pa. At high stresses, networks that stress stiffen are also observed to shear thicken, whereby the effective viscosity increases as a function of stress. Shear thickening results in a reduction in the extent of irreversible, viscous deformation in actin/NMMIIB-ADP networks at high stresses compared to that expected for a linear viscoelastic material. Thus, viscous deformation contributes less to the overall mechanical response at high levels of applied force. Our results indicate mechanisms by which the fluid-like nature of the actomyosin cytoskeleton can be reduced under high load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088166PMC
http://dx.doi.org/10.1039/C0SM01157FDOI Listing

Publication Analysis

Top Keywords

f-actin networks
28
viscous deformation
12
networks
10
shear thickening
8
behaviors f-actin
8
actin/nmmiib-adp networks
8
high stresses
8
f-actin
7
thickening f-actin
4
networks crosslinked
4

Similar Publications

A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo.

Proc Natl Acad Sci U S A

January 2025

Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.

Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear.

View Article and Find Full Text PDF

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

These protocols describe a detailed method to determine the DNA damage and F-actin and microtubule defects of metaphase II oocytes caused by hexavalent chromium, Cr(VI), an endocrine disrupting chemical (EDC). The protocol provides systematic steps to determine protein expression encoded by pluripotency proteins such as Oct4, Nanog, and Cdx2 during early embryonic development. Occupational or environmental exposure to EDCs has significantly increased infertility in both men and women.

View Article and Find Full Text PDF

LASP1 inhibits the formation of NETs and alleviates acute pancreatitis by stabilizing F-actin polymerization in neutrophils.

Biochem Biophys Res Commun

January 2025

Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Yangzhou University, Kunshan, Suzhou, Jiangsu, China. Electronic address:

Background: Neutrophil extracellular traps (NETs) play a significant role in the development of acute pancreatitis (AP). The actin-binding protein LASP1 regulates proteins associated with the cytoskeleton, yet its precise involvement in NETs and AP remains to be elucidated.

Methods: To investigate the role of LASP1 in NETs and AP, several bioinformatics methods, such as weighted gene co-expression network analysis (WGCNA), differential analysis, and least absolute shrinkage and selection operator (LASSO) regression, were utilized to screen for feature genes based on the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Background: The challenge of expanding haematopoietic stem/progenitor cells (HSPCs) in vitro has limited their clinical application. Human hair follicle mesenchymal stem cells (hHFMSCs) can be reprogrammed to generate intermediate stem cells by transducing OCT4 (hHFMSCs) and pre-inducing with FLT3LG/SCF, and differentiated into erythrocytes. These intermediate cells exhibit gene expression patterns similar to pre-HSCs, making them promising for artificial haematopoiesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!