Transformation of macrophages into foam cells by apolipoprotein (Apo) E-deficient, ApoB48-containing (E(-)/B48) lipoproteins has been shown to be associated with increased phosphorylation of eukaryotic initiation factor-2α (eIF-2α). The present report examined the causal relationship between eIF-2α phosphorylation and lipid accumulation in macrophages induced by E(-)/B48 lipoproteins. E(-)/B48 lipoproteins increased eIF-2α phosphorylation and cholesterol ester accumulation, while lipoprotein degradation decreased and lysosomal acid lipase and cathepsin B mRNA translation was inhibited in mouse peritoneal macrophages (MPMs). These responses were overcome by overexpression of a nonphosphorylatable eIF-2α mutant in MPMs. Incubation of MPMs with E(-)/B48 lipoproteins also increased the phosphorylation of RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK), but not other eIF-2α kinases. Overexpression of a nonphosphorylatable PERK mutant inhibited PERK and eIF-2α phosphorylation, and alleviated cholesterol ester accumulation induced by E(-)/B48 lipoproteins. PERK is an eIF-2α kinase activated by endoplasmic reticulum (ER) stress. Taken together, findings from this report suggest that induction of ER stress, i.e., activation of the PERK-eIF2α signaling cascade, is a mechanism by which E(-)/B48 lipoproteins down-regulate lysosomal hydrolase synthesis, inhibit lysosomal lipoprotein degradation, and increase intracellular lipoprotein and cholesterol ester accumulation, resulting in foam cell formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086298PMC
http://dx.doi.org/10.4172/1948-593x.1000033DOI Listing

Publication Analysis

Top Keywords

e-/b48 lipoproteins
24
eif-2α phosphorylation
12
cholesterol ester
12
ester accumulation
12
perk eif-2α
12
foam cell
8
cell formation
8
signaling cascade
8
increased phosphorylation
8
induced e-/b48
8

Similar Publications

We previously reported that the apolipoprotein (apo) B48-carrying lipoproteins obtained from apoE knockout (apoE (-/-) ) mice, so called E(-)/B48 lipoproteins, transformed mouse macrophages into foam cells and enhanced the phosphorylation of eukaryotic translation initiation factor 2 α (eIF-2 α ). Furthermore, the eIF-2 α phosphorylation inhibitor, 2-aminopurine (2-AP), attenuated E(-)/B48 lipoprotein-induced foam cell formation. The present report studied the effect of 2-AP on atherosclerosis in apoE (-/-) mice.

View Article and Find Full Text PDF

Transformation of macrophages into foam cells by apolipoprotein (Apo) E-deficient, ApoB48-containing (E(-)/B48) lipoproteins has been shown to be associated with increased phosphorylation of eukaryotic initiation factor-2α (eIF-2α). The present report examined the causal relationship between eIF-2α phosphorylation and lipid accumulation in macrophages induced by E(-)/B48 lipoproteins. E(-)/B48 lipoproteins increased eIF-2α phosphorylation and cholesterol ester accumulation, while lipoprotein degradation decreased and lysosomal acid lipase and cathepsin B mRNA translation was inhibited in mouse peritoneal macrophages (MPMs).

View Article and Find Full Text PDF

We previously reported that apolipoprotein (Apo) E-deficient, ApoB48-containing (E(-)/B48) lipoproteins inhibited expression of lysosomal hydrolase and transformed mouse peritoneal macrophages (MPMs) into foam cells. The present study examined the effect of 2-aminopurine (2-AP), an inhibitor of eukaryotic initiation factor (eIF)-2alpha phosphorylation, on E(-)/B48 lipoprotein-induced changes in gene expression and foam cell formation. Our data demonstrated that E(-)/B48 lipoproteins enhanced phosphorylation of eIF-2alpha in macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!