The effects of the Oryza sativa calcium/calmodulin-dependent protein kinase OsCCaMK genotype (dominant homozygous [D], heterozygous [H], recessive homozygous [R]) on rice root-associated bacteria, including endophytes and epiphytes, were examined by using a Tos17 rice mutant line under paddy and upland field conditions. Roots were sampled at the flowering stage and were subjected to clone library analyses. The relative abundance of Alphaproteobacteria was noticeably decreased in R plants under both paddy and upland conditions (0.8% and 3.0%, respectively) relative to those in D plants (10.3% and 17.4%, respectively). Population shifts of the Sphingomonadales and Rhizobiales were mainly responsible for this low abundance in R plants. The abundance of Anaerolineae (Chloroflexi) and Clostridia (Firmicutes) was increased in R plants under paddy conditions. The abundance of a subpopulation of Actinobacteria (Saccharothrix spp. and unclassified Actinosynnemataceae) was increased in R plants under upland conditions. Principal coordinate analysis revealed unidirectional community shifts in relation to OsCCaMK gene dosage under both conditions. In addition, shoot length, tiller number, and plant weight decreased as the OsCCaMK gene dosage decreased under upland conditions. These results suggest significant impacts of OsCCaMK on both the diversity of root-associated bacteria and rice plant growth under both paddy and upland field conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127688 | PMC |
http://dx.doi.org/10.1128/AEM.00315-11 | DOI Listing |
J Environ Manage
December 2024
Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
Promoting soil multifunctionality is pivotal for maintaining agricultural productivity and sustainable agriculture, especially with the increasing global population and food demand. The effectiveness of different agricultural practices in enhancing soil multifunctionality and how the combination can maximize soil multifunctionality remains unknown. This study aimed to investigate the different impacts of rotation (paddy-upland rotation and dryland rotation) combined with fertilization (chemical fertilizer and manure) on soil multifunctionality, microbial community structure, and microbial networks.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
Biogeographic distribution of prokaryotic and eukaryotic communities has been extensively studied. Yet, our knowledge of viral biogeographic patterns, the corresponding driving factors and the virus-resistome associations is still limited. Here, using metagenomic analysis, we explored the viral communities and profiles of antibiotic resistance genes (ARGs) in 30 fields of paddy (rice soils, RS) and upland soils (corn soils, CS) at a regional scale across black soil region of Northeast China.
View Article and Find Full Text PDFPest Manag Sci
February 2025
College of Environment and Ecology, Hunan Agricultural University, Changsha, China.
Background: Fungicide residues were frequently detected in vegetables and soils, which severely affected crop yields and qualities. Reasonable nitrogen management might promote yields and decrease fungicide carbendazim residues in plant-soil systems. Current study explores comprehensive relationships among carbendazim residues, crop yields, soil multifunctionalities and endophytic and soil bacterial communities after applying nitrification inhibitors (3,4-dimethylpyrazole phosphate and dicyandiamide) and percarbamide to different soils.
View Article and Find Full Text PDFJ Sci Food Agric
October 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China.
Sci Total Environ
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!