Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the selectivity of UDP-glucuronosyltransferase (UGT) enzyme inhibition by ketamine (KTM) and the kinetics of KTM inhibition of human liver microsomal morphine (MOR) and codeine (COD) glucuronidation were characterized to explore a pharmacokinetic basis for the KTM-opioid interaction. With the exception of UGT1A4, KTM inhibited the activities of recombinant human UGT enzymes in a concentration-dependent manner. However, IC(50) values were <100 μM only for UGT2B4, UGT2B7, and UGT2B15. UGT2B7 catalyzes MOR 3- and 6-glucuronidation and the 6-glucuronidation of COD, with an additional substantial contribution of UGT2B4 to the latter reaction. Consistent with the effects of KTM on the activities of recombinant UGT2B enzyme activities, KTM competitively inhibited human liver microsomal MOR and COD glucuronidation. K(i) values for KTM inhibition of MOR 3- and 6-glucuronidation and COD 6-glucuronidation by human liver microsomes supplemented with 2% bovine serum albumin were 5.8 ± 0.1, 4.6 ± 0.2, and 3.5 ± 0.1 μM, respectively. Based on the derived inhibitor constants, in vitro-in vivo extrapolation was used to predict the effects of anesthetic and analgesic doses of KTM on MOR and COD clearances. Potentially clinically significant interactions (>50% increases in the in vivo area under the curve ratios) with MOR and COD were predicted for anesthetic doses of KTM and for a subanesthetic dose of KTM on COD glucuronidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.111.039727 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!