Protein quality control (PQC) degradation protects the cell by preventing the toxic accumulation of misfolded proteins. In eukaryotes, PQC degradation is primarily achieved by ubiquitin ligases that attach ubiquitin to misfolded proteins for proteasome degradation. To function effectively, PQC ubiquitin ligases must distinguish misfolded proteins from their normal counterparts by recognizing an attribute of structural abnormality commonly shared among misfolded proteins. However, the nature of the structurally abnormal feature recognized by most PQC ubiquitin ligases is unknown. Here we demonstrate that the yeast nuclear PQC ubiquitin ligase San1 recognizes exposed hydrophobicity in its substrates. San1 recognition is triggered by exposure of as few as five contiguous hydrophobic residues, which defines the minimum window of hydrophobicity required for San1 targeting. We also find that the exposed hydrophobicity recognized by San1 can cause aggregation and cellular toxicity, underscoring the fundamental protective role for San1-mediated PQC degradation of misfolded nuclear proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128539 | PMC |
http://dx.doi.org/10.1091/mbc.E11-03-0256 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFCell Death Discov
January 2025
Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate (AEC) syndrome is a rare genetic disorder caused by mutations in the TP63 gene, which encodes a transcription factor essential for epidermal gene expression. A key feature of AEC syndrome is chronic skin erosion, for which no effective treatment currently exists. Our previous studies demonstrated that mutations associated with AEC syndrome lead to p63 protein misfolding and aggregation, exerting a dominant-negative effect.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:
Dectin-1 (CLEC7A), a C-type lectin-like receptor that recognizes β-1,3 glucans, has a key role in the innate immune system. While the lectin domain of mouse Dectin-1 has been solubilized and refolded from inclusion bodies in Escherichia coli, similar refolding of the human Dectin-1 lectin domain is hindered by the formation of misfolded multimers with aberrant intermolecular disulfide bonds. The aim of this study was to develop a method for the large-scale production of the human Dectin-1 lectin domain.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung 433, Taiwan.
Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay between autophagy and UPR in hemodialysis (HD) patients remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!