PKB signaling and atrogene expression in skeletal muscle of aged mice.

J Appl Physiol (1985)

Department of Health and Exercise Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.

Published: July 2011

The purpose of this study was to determine if PKB signaling is decreased and contractile protein degradation is increased in extensor digitorum longus (EDL) and soleus (SOL) muscles from middle-aged (MA) and aged (AG) mice. We also examined the effect of age on atrogene expression in quadriceps muscle. PKB activity, as assessed by Thr(308) and Ser(473) phosphorylation, was significantly higher in EDL and SOL muscles from AG than MA mice. The age-related increase in PKB activity appears to be due to an increase in expression of the kinase, as PKB-α and PKB-β levels were significantly higher in EDL and SOL muscles from AG than MA mice. The phosphorylation of forkhead box 3a (FOXO3a) on Thr(32), a PKB target, was significantly higher in EDL muscles from AG than MA mice. The rate of contractile protein degradation was similar in EDL and SOL muscles from AG and MA mice. Atrogin-1 and muscle-specific RING finger protein 1 (MuRF-1) mRNA levels did not change in muscles from AG compared with MA mice, indicating that ubiquitin-proteasome proteolysis does not contribute to sarcopenia. A significant decrease in Bcl-2 and 19-kDa interacting protein 3 (Bnip3) and GABA receptor-associated protein 1 (Gabarap1) mRNA was observed in muscles from AG compared with MA mice, which may contribute to age-related contractile dysfunction. In conclusion, the mechanisms responsible for sarcopenia are distinct from experimental models of atrophy and do not involve atrogin-1 and MuRF-1 or enhanced proteolysis. Finally, a decline in autophagy-related gene expression may provide a novel mechanism for impaired contractile function and muscle metabolism with advancing age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137534PMC
http://dx.doi.org/10.1152/japplphysiol.00175.2011DOI Listing

Publication Analysis

Top Keywords

sol muscles
16
muscles mice
16
higher edl
12
edl sol
12
pkb signaling
8
atrogene expression
8
mice
8
aged mice
8
contractile protein
8
protein degradation
8

Similar Publications

Unlabelled: To investigate the effects of differing treadmills on impact acceleration and muscle activation.

Methods: 15 males and 7 females (27.8 ± 7.

View Article and Find Full Text PDF

The study aimed to determine if virtual reality (VR) games could enhance neuromuscular control and improve anticipatory and compensatory strategies in ball-kicking for soccer players. It was a single-blind randomized clinical trial involving 32 male soccer players with chronic ankle instability. Participants were divided into two groups: VR games and balance training.

View Article and Find Full Text PDF

The objective of this study was to investigate the physicochemical properties, drug release and in situ depot-forming behavior of alginate hydrogel containing poorly water-soluble aripiprazole (ARP) for achieving free-flowing injectability, clinically accessible gelation time and sustained drug release. The balanced ratio of pyridoxal phosphate (PLP) and glucono-delta-lactone (GDL) was crucial to modulate gelation time of the alginate solution in the presence of calcium carbonate. Our results demonstrated that the sol state alginate hydrogel before gelation was free-flowing, stable and readily injectable using a small 23 G needle.

View Article and Find Full Text PDF

Background: Gait initiation (GI) can be divided into three sections according to the center of pressure (COP) trace (S1, S2, and S3). Almost all studies do not separate each phase of the GI profile in postural control assessment and muscular investigation, whereas differences in the COP and muscles are found in each phase of the GI profile in people with gait problems.

Methods: Twenty individuals with CAI and twenty healthy controls were included in the present study.

View Article and Find Full Text PDF

Species-specific responses to di (2-ethylhexyl) phthalate reveal activation of defense signaling pathways in California sea lion but not in human skeletal muscle cells in primary culture.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico. Electronic address:

Higher antioxidant defenses in marine than terrestrial mammals allow them to cope with oxidative stress associated with diving-induced ischemia/reperfusion. Does this adaptation translate to inherent resistance to other stressors? We analyzed oxidative stress indicators in cells derived from human and California sea lion (Zalophus californianus) skeletal muscle upon exposure to di (2-ethylhexyl) phthalate (DEHP). Human abdominal muscle biopsies were collected from healthy women undergoing planned cesarean surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!