Several studies have demonstrated that tissue culture conditions influence the differentiation of human adipose-derived stem cells (hASCs). Recently, studies performed on SAOS-2 and bone marrow stromal cells (BMSCs) have shown the effectiveness of high frequency vibration treatment on cell differentiation to osteoblasts. The aim of this study was to evaluate the effects of low amplitude, high frequency vibrations on the differentiation of hASCs toward bone tissue. In view of this goal, hASCs were cultured in proliferative or osteogenic media and stimulated daily at 30Hz for 45min for 28days. The state of calcification of the extracellular matrix was determined using the alizarin assay, while the expression of extracellular matrix and associated mRNA was determined by ELISA assays and quantitative RT-PCR (qRT-PCR). The results showed the osteogenic effect of high frequency vibration treatment in the early stages of hASC differentiation (after 14 and 21days). On the contrary, no additional significant differences were observed after 28days cell culture. Transmission Electron Microscopy (TEM) images performed on 21day samples showed evidence of structured collagen fibers in the treated samples. All together, these results demonstrate the effectiveness of high frequency vibration treatment on hASC differentiation toward osteoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2011.04.013DOI Listing

Publication Analysis

Top Keywords

high frequency
20
frequency vibration
16
vibration treatment
16
differentiation human
8
human adipose-derived
8
adipose-derived stem
8
stem cells
8
cells hascs
8
low amplitude
8
amplitude high
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!