The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2011.04.021 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Despite the broad catalytic relevance of metal-support interfaces, controlling their chemical nature, the interfacial contact perimeter (exposed to reactants), and consequently, their contributions to overall catalytic reactivity, remains challenging, as the nanoparticle and support characteristics are interdependent when catalysts are prepared by impregnation. Here, we decoupled both characteristics by using a raspberry-colloid-templating strategy that yields partially embedded PdAu nanoparticles within well-defined SiO or TiO supports, thereby increasing the metal-support interfacial contact compared to nonembedded catalysts that we prepared by attaching the same nanoparticles onto support surfaces. Between nonembedded PdAu/SiO and PdAu/TiO, we identified a support effect resulting in a 1.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA.
: Liver diseases are a global health concern. Many in vitro liver models utilize cryopreserved primary human hepatocytes (PHHs), which commonly undergo post-thaw processing through colloidal silica gradients to remove debris and enrich for a viable PHH population. Post-thaw processing effects on healthy PHHs are partially understood, but the consequences of applying disease-origin PHHs to post-thaw density gradient separation have not been described.
View Article and Find Full Text PDFOsteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.
View Article and Find Full Text PDFSci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
The morphology and kinetics of the crystal growth front have been poorly explored at the particle level. Here, we experimentally observe the crystal growth front in liquid with single-particle kinetics using colloid systems and reveal a surface layer of polymorphic crystal near the solid-solid transition when the two crystals form a low-energy coherent interface. The thickness of the surface crystal can exceed 50 particles and grows logarithmically with the temperature as approaching the solid-solid transition which follows premelting theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!