Several naturally occurring coumarin compounds, including scopoletin (7 hydroxy-6 methoxycoumarin), of plant origin have been reported to have anti-cancer potentials. A related but chemically synthesized coumarin, 4-methyl-7-hydroxy coumarin (SC), was also shown to have similar anti-cancer potentials. In the present study, to test if nano-encapsulated SC could be a more potent anti-cancer agent, we encapsulated SC with poly lactide-co-glycolide acid (PLGA) nanoparticles (Nano Coumarin; NC) and tested its potentials with a variety of protocols. NC demonstrated greater efficiency of drug uptake and showed anti-cancer potentials in melanoma cell line A375, as revealed from scanning electronic and atomic force microscopies. To test its possible interaction with target DNA, the combined data of circular dichroism spectra (CD) and melting temperature profile (T(m)) of calf thymus DNA treated with NC were analyzed. Results indicated a concentration dependent interaction of NC with calf thymus DNA, bringing in effective change in structure and conformation, and forming a new complex that increased its stability. Particle size and morphology of NC determined through polydispersity index and zeta potential using dynamic light scattering qualified NC to be a more potent anti-cancer agent than SC. Further, SC and NC showed negligible cytotoxic effects on normal skin cells and peripheral blood mononuclear cells of mice. Distribution assay of PLGA nanoparticles in different tissues like brain, heart, kidneys, liver, lungs, and spleen in mice revealed the presence of nanoparticles in different tissues including brain, indicating that the particles could cross the blood brain barrier, significant information for drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2011.04.010DOI Listing

Publication Analysis

Top Keywords

calf thymus
12
thymus dna
12
anti-cancer potentials
12
poly lactide-co-glycolide
8
lactide-co-glycolide acid
8
interaction calf
8
potent anti-cancer
8
anti-cancer agent
8
plga nanoparticles
8
nanoparticles tissues
8

Similar Publications

Exploring Biophysical and Chemoinformatics Approaches for Interactions of Ionic Liquids with Hemoglobin, DNA, BSA, and HSA.

Chem Biodivers

January 2025

SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.

This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.

View Article and Find Full Text PDF

This article presents a new and facile method for the synthesis of Schiff base compounds with a benzimidazole group using a low-cost and reusable calcium aluminate nanophosphorus catalyst (CaAlO). This approach avoids harmful solvents and reactants, supporting a more environmentally friendly synthesis process. The catalyst maintained its activity and heterogeneity over four cycles with minimal loss of efficiency.

View Article and Find Full Text PDF

Circulating histones have been identified as essential mediators that lead to hyperinflammation, platelet aggregation, coagulation cascade activation, endothelial cell injury, multiple organ dysfunction, and death in severe patients with sepsis, multiple trauma, COVID-19, acute liver failure, and pancreatitis. Clinical evidence suggests that plasma levels of circulating histones are positively associated with disease severity and survival in patients with such critical diseases. However, safe and efficient therapeutic strategies targeting circulating histones are lacking in current clinical practice.

View Article and Find Full Text PDF

In this study, we have designed and developed a cationic bolaform C-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride) (C(DDUPAC)) that is derived from biocompatible molecules. The bolaform C(DDUPAC) has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride) (C(DUAC)) of its precursor molecule.

View Article and Find Full Text PDF

Unraveling the mechanisms underlying the fluorescent probe detection of microcystin-LR and its binding with CT-DNA.

Int J Biol Macromol

January 2025

Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China; Southwest United Graduate School, Kunming 650092, PR China. Electronic address:

Cyanobacteria blooms are concerning due to algal toxins like microcystin-leucine arginine (MC-LR). Despite progress in detecting MC-LR and understanding its toxic effects, including calf thymus DNA (CT-DNA) damage, the mechanisms for fluorescent probe detection of MC-LR and its binding to CT-DNA are poorly understood. In this study, we designed three fluorescent probes for MC-LR detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!