A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gelation in semiflexible polymers. | LitMetric

Gelation in semiflexible polymers.

J Chem Phys

Department of Chemical Engineering, Columbia University, New York, New York 10027, USA.

Published: May 2011

Molecular dynamics simulations have been employed to study the formation of a physical gel by semiflexible polymer chains. The formation of a geometrically connected network of these chains is investigated as a function of temperature and rate of cooling. The stiffness of the molecules is controlled via a potential between beads separated by two bonds. As the temperature is lowered, a percolated homogeneous solution phase separates to form a high-density, non-percolated nematic fluid and a low-density gas phase. On further decreasing the temperature, the chains are dynamically arrested preventing the completion of the vapor-liquid (VL) phase separation. As a result, the chains are stuck in a three-dimensional network of nematic bundles forming a percolated gel. Apart from temperature, the rate of cooling also plays an important role in the formation of the gel. Cooling the system at a faster rate yields gel while slower rates result in complete VL phase separation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3587134DOI Listing

Publication Analysis

Top Keywords

temperature rate
8
rate cooling
8
phase separation
8
gelation semiflexible
4
semiflexible polymers
4
polymers molecular
4
molecular dynamics
4
dynamics simulations
4
simulations employed
4
employed study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!