Low energy experimental and theoretical triply differential cross sections are presented for electron impact ionization of methane (CH(4)) for both the highest occupied molecular orbital (HOMO) and next highest occupied molecular orbital (NHOMO). The HOMO is a predominantly p-type orbital which is labeled 1t(2) and the NHOMO is predominantly s-type labeled 2a(1). Coplanar symmetric (symmetric both in final state electron energies and observation angles) are presented for final state electron energies ranging from 2.5 to 20 eV. The theoretical M3DW (molecular three-body distorted wave) results are in surprisingly good agreement with experiment for the HOMO state and less satisfactory agreement for the NHOMO state. The molecular NHOMO results are also compared with the ionization of the 2s shell of neon which is the isoelectronic atom.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3581812DOI Listing

Publication Analysis

Top Keywords

low energy
8
molecular three-body
8
three-body distorted
8
distorted wave
8
highest occupied
8
occupied molecular
8
molecular orbital
8
final state
8
state electron
8
electron energies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!