A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New 8-amino-BODIPY derivatives: surpassing laser dyes at blue-edge wavelengths. | LitMetric

The development of highly efficient and stable blue-emitting dyes to overcome some of the most important shortcomings of available chromophores is of great technological importance for modern optical, analytical, electronic, and biological applications. Here, we report the design, synthesis and characterization of new tailor-made BODIPY dyes with efficient absorption and emission in the blue spectral region. The major challenge is the effective management of the electron-donor strength of the substitution pattern, in order to modulate the emission of these novel dyes over a wide spectral range (430-500 nm). A direct relationship between the electron-donor character of the substituent and the extension of the spectral hypsochromic shift is seen through the energy increase of the LUMO state. However, when the electron-donor character of the substituent is high enough, an intramolecular charge-transfer process appears to decrease the fluorescence ability of these dyes, especially in polar media. Some of the reported novel BODIPY dyes provide very high fluorescence quantum yields, close to unity, and large Stokes shifts, leading to highly efficient tunable dye lasers in the blue part of the spectrum; this so far remains an unexploited region with BODIPYs. In fact, under demanding transversal pumping conditions, the new dyes lase with unexpectedly high lasing efficiencies of up to 63 %, and also show high photostabilities, outperforming the laser action of other dyes considered as benchmarks in the same spectral region. Considering the easy synthetic protocol and the wide variety of possible substituents, we are confident that this strategy could be successfully extended for the development of efficient blue-edge emitting materials and devices, impelling biophotonic and optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201003689DOI Listing

Publication Analysis

Top Keywords

dyes
8
highly efficient
8
bodipy dyes
8
spectral region
8
electron-donor character
8
character substituent
8
8-amino-bodipy derivatives
4
derivatives surpassing
4
surpassing laser
4
laser dyes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!