The purpose of the study was to examine the nanoscale distribution and density of the VEGFR-2 membrane receptor on the endothelial cell surface of glioma microvasculature. Immunofluorescence and atomic force microscopy combined with immunogold labeling techniques were used to characterize and determine the position of the glioma microvasculature endothelial cell surface receptor VEGFR-2. We aimed to indirectly detect the distribution of VEGFR-2 on the cell membrane at the nanoscale level and to analyze VEGFR-2 quantitatively. Immunofluorescence imaging showed a large amount of VEGFR-2 scattered across the endothelial cell surface; atomic force microscopy imaging also showed two globular structures of different sizes scattered across the endothelial cell surface. The difference between the average diameter of the small globular structure outside the cell surface (43.67 ± 5.02 nm) and that of IgG (44.61 ± 3.19 nm) was not statistically significant (P > 0.05). The three-dimensional morphologies of the small globular structure outside the cell surface and IgG were similar. The difference between the average diameter of the large globular structure outside the cell surface (74.19 ± 9.10 nm) and that of IgG-SpA-CG (74.54 ± 15.93 nm) was also not statistically significant (P > 0.05). The three-dimensional morphologies of this large globular structure outside the cell surface and IgG-SpA-CG were similar. The total density of these two globular structures within the unit area was 92 ± 19 particles μm(2). No globular structures were seen on the cell surface in the control group. The large globular structure on the surface of glioma microvascular endothelial cells was categorized as a VEGFR-2-IgG-SpA-CG immune complex, whereas the small globular structure was categorized as a VEGFR-2-IgG immune complex. The positions of the globular structures were the same as the positions of the VEGFR-2 molecules. A large amount of VEGFR-2 was scattered across glioma microvascular endothelial cell surfaces; the receptor density was about 92 per square micron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-011-9665-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!